Service Guide

Publication Number 34970-90012 (order as 34970-90101 manual set) Edition 3, March 2003
© Copyright Agilent Technologies, Inc. 1997-2003
F or Safety information, Warranties, and Regulatory information, se the pages following the Index.

Note: The schematics for the 34970A areavailable as a separate downloadablePDF filefrom the Agilent web site at www.agilent.com.

Agilent 34970A
 Data Acquistion/Switch Unit

Note: Unless otherwise indicated, this manual applies to all serial numbers.

The Agilent Technologies 34970A combines precision measurement capability with flexible signal connections for your production and devel opment test systems. Three module slots are built into the rear of the instrument to accept any combination of data acquisition or switching modules. The combination of data logging and data acquisition features makes this instrument a versatile solution for your testing requirements now and in the future.

Convenient Data Logging Features

- Direct measurement of thermocouples, RTDs, thermistors, dc voltage, ac voltage, resistance, dc current, ac current, frequency, and period
- Interval scanning with storage of up to 50,000 time-stamped readings
- Independent channel configuration with function, Mx+B scaling, and alarm limits available on a per-channel basis
- Intuitive user interface with knob for quick channel selection, menu navigation, and data entry from the front panel
- Portable, ruggedized case with non-skid feet
- BenchLink Data Logger Softwarefor Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ induded

Flexible Data Acquisition/Switching Features

- 612-digit multimeter accuracy, stability, and noise rejection
- Up to 60 channels per instrument (120 single-ended channels)
- Reading rates up to 600 readings per second on a single channel and scan rates up to 250 channels per second
- Choice of multiplexing, matrix, general-purpose Form C switching, RF switching, digital I/O, totalize, and 16-bit analog output functions
- GPIB (IEEE-488) interface and RS-232 interface are standard
- SCPI (Standard Commands for Programmablel nstruments) compatibility

The procedures in this manual are intended for use by qualified, service-trained personnel only.

Agilent 34970A
 Data Acquisition/Switch Unit

The Front Panel at a Glance

Denotes a menu key. Se the next page for details on menu operation.

1 State Storage / Remote Interface Menus
2 Scan Start / Stop Key
3 Measurement Configuration Menu
4 Scaling Configuration Menu
5 Alarm / Alarm Output Configuration Menu
6 Scan-to-Scan Interval Menu
7 Scan List Single Step/Read Key

8 Advanced Measurement / Utility Menus
9 Low-Level Module Control Keys
10 Single-Channel Monitor On/Off Key
11 View Scanned Data, Alarms, Errors Menu
12 Shift / Local Key
13 Knob
14 Navigation Arrow Keys

The Front-Panel Menus at a Glance

Several of the front-panel keys guide you through menus to configure various parameters of the instrument (see previous page). The following steps demonstrate the menu structure using the sioned key.

1 Press the menu key. You are automatically guided to the first level of the menu.
Rotate the knob to view the other choices on the first level of the menu.

The menu will automatically timeout after about 20 seconds of inactivity. You will be returned to the operation in progress prior to entering themenu.

2 Press the same menu key again to move to the next item of the menu. Typically, this is where you choose parameter values for the selected operation.

3 Rotate the knob to view the choices on this level of the menu. When you reach the end of the list, rotate the knob in the opposite direction to view all of the other choices.

Thecurrent selection is highlighted for emphasis. All other choices aredimmed.

4 Press the same menu key again to accept the change and exit the menu. A brief confirmation message is displayed.

Tip: To review the current configuration of a specific menu, press the menu key several times. A messageNO CHANGES is displayed when you exit the menu.

Display Annunciators

```
W. Agilent 34970A
    DATA ACQUISTION / SWITCH UNIT
```


SCAN	Scan is in progress or enabled. Press and hold again to turn off.
MON	Monitor mode is enabled. Press von again to turn off.
VIEW	Scanned readings, alarms, errors, or relay cycles are being viewed.
CONFIG	Channel configuration is in progress on displayed channel.
*	Measurement is in progress.
ADRS	Instrument is addressed to listen or talk over the remote interface.
RMT	Instrument is in remote mode (remote interface).
ERROR	Hardware or remote interface errors are detected. Press viom to read errors.
EXT	Instrument is configured for an external scan interval.
ONCE	Scan Once mode is enabled. Press to initiate and hold key to disable.
MEM	Reading memory overflow; new readings will overwrite the oldest readings.
LAST	Viewed data is the last reading stored during most recent scan.
MIN	Viewed data is the minimum reading stored during most recent scan.
MAX	Viewed data is the maximum reading stored during most recent scan.
SHIFT	(sitit has been pressed. Press sint again to turn off.
4W	4 -wire function is in use on displayed channel.
OC	Offset compensation is enabled on displayed channel.
易	Alarms are enabled on displayed channel.
K	$\mathrm{Mx}+\mathrm{B}$ scaling is enabled on displayed channel.
	HI or LO alarm condition has occurred on indicated alarms.

[^0]
The Rear Panel at a Glance

1 Slot Identifier (100, 200, 300)
2 Ext Trig Input / Alarm Outputs / Channel Advance Input / Channel Closed Output (for pinouts, see chapter 4 in User's Guide)
3 RS-232 Interface Connector

4 Power-Line Fuse-Holder Assembly
5 Power-Line Voltage Setting
6 Chassis Ground
7 GPIB (IEEE-488) Interface Connector

Use the 1 Heracace Menu to:

- Select the GPIB or RS-232 interface (see chapter 2 in User's Guide).
- Set the GPIB address (see chapter 2 in User's Guide).
- Set the RS-232 baud rate, parity, and flow control mode (see chapter 2 in User's Guide).

For protection from electrical shock, the power cord ground must not be defeated. If only a two-contact electrical outlet is available, connect the instrument's chassis ground screw (see above) to a good earth ground.

The Plug-In Modules at a Glance

For complete specifications on each plug-in module, refer to the module sections in chapter 1.

34901A 20-Channel Armature Multiplexer

- 20 channels of 300 V switching
- Two channels for DC or AC current measurements (100 nA to 1 A)
- Built-in thermocouple reference junction
- Switching speed of up to 60 channels per second
- Connects to the internal multimeter

Each of the 20 channels switches both HI and LO inputs, thus providing fully isolated inputs to the internal multimeter. The module is divided into two banks of 10 two-wire channels each. When making four-wire resistance measurements, channels from Bank A are automatically paired with channels from Bank B. Two additional fused channels are induded on the module (22 channels total) for making calibrated DC or AC current measurements with the internal multimeter (external shunt resistors are not required). Y ou can close multiple channels on this module only if you have not configured any channels to be part of the scan list. Otherwise, all channels on the module are break-before-make.

34902A 16-Channel Reed Multiplexer

- 16 channels of 300 V switching
- Built-in thermocouple reference junction
- Switching speed of up to 250 channels per second
- Connects to the internal multimeter

Use this module for high-speed scanning and high-throughput automated test applications. Each of the 16 channels switches both HI and LO inputs, thus providing fully isolated inputs to the internal multimeter. The module is divided into two banks of eight two-wire channels each. When making four-wire resistance measurements, channels from Bank A are automatically paired with channels from Bank B. You can dose multiple channels on this module only if you have not configured any channels to be part of the scan list. Otherwise, all channels on the module are break-before-make.

34903A 20-Channel Actuator/General-Purpose Switch

- $300 \mathrm{~V}, 2$ A actuation and switching
- SPDT (F orm C) latching relays
- Breadboard area for custom circuits

Use this module for those applications that require high-integrity contacts or quality connections of non-multiplexed signals. This module can switch $300 \mathrm{~V}, 1$ A (50 W maximum switch power) to your device under test or to actuate external devices. Screw terminals on the module provide access to the Normally-Open, N ormally-Closed, and Common contacts for each of the 20 switches. A breadboard area is provided near the screw terminals to implement custom circuitry, such as simple filters, snubbers, or voltage dividers.

34904A 4x8 Two-Wire Matrix Switch

- 32 two-wire crosspoints
- Any combination of inputs and outputs can be connected at a time
- 300 V, 1 A switching

Use this module to connect multiple instruments to multiple points on your device under test at the same time. You can connect rows and columns between multiple modules to build larger matrices such as 8×8 and 4×16, with up to 96 crosspoints in a single mainframe.

34905/6A Dual 4-Channel RF Multiplexers

- 34905A (50) / 34906A (75)
- 2 GHz bandwidth with on-board SMB connections
- 1 GHz bandwidth with SMB-to-BNC adapter cables provided

These modules offer wideband switching capabilities for high frequency and pulsed signals. Each module is organized in two independent banks of 4-to-1 multiplexers. Both modules offer low crosstalk and excellent insertion loss performance. To create larger RF multiplexers, you can cascade multiple banks together. Only one channel in each bank may be closed at a time.

34907A Multifunction Module

- Two 8-bit Digital Input/Output ports, 400 mA sink, 42 V open collector
- 100 kHz Totalize input with 28 bits of resolution
- Two 16 -bit, ± 12 V Calibrated Analog Outputs

Use this module to sense status and control external devices such as solenoids, power relays, and microwave switches. For greater flexibility, you can read digital inputs and the count on the totalizer during a scan.

34908A 40-Channel Single-E nded Multiplexer

- 40 channels of 300 V single-ended (common LO) switching
- Built-in thermocouple isothermal reference junction
- Switching speed of up to 60 channels per second
- Connects to the internal multimeter

Use this module for high-density switching applications which require single-wire inputs with a common LO. All relays are break-before-make to ensure that only one relay is connected at any time.

In This Book

Specifications Chapter 1 lists the technical specifications for the mainframe and plug-in modules.

Quick Start Chapter 2 helps you get familiar with a few of the instrument's front-panel features.

Front-Panel Overview Chapter 3 introduces you to the front-panel menus and describes some of the instrument's menu features.

Calibration Procedures Chapter 4 provides calibration, verification, and adjustment procedures for the instrument.

Theory of Operation Chapter 5 describes block and circuit level theory related to the operation the instrument.

Service Chapter 6 provides guidelines for returning your instrument to Agilent Technologies for servicing, or for servicing it yourself.

Replaceable Parts Chapter 7 contains detailed parts lists for the mainframe and plug-in modules.

Schematics Chapter 8 contains the instrument's block diagram, schematics, disassembly drawings, and component locator drawings.

If you havequestions relating to the operation of the 34970A, call 1-800-452-4844 in the United States, or contact your nearest Agilent Technologies Sales Office.

If your 34970A fails within threeyears of original purchase, Agilent will repair or replace it free of charge. Call 1-877-447-7278 and ask for "Express Exchange."

Contents

Chapter 1 Specifications
DC, Resistance, and Temperature Accuracy Specifications 16
DC Measurement and Operating Characteristics 17
AC Accuracy Specifications 18
AC Measurement and Operating Characteristics 19
Measurement Rates and System Characteristics 20
Module Specifications 21
BenchLink Data Logger Software Specifications 24
Product and Module Dimensions 25
To Calculate Total Measurement Error 26
Interpreting Internal DMM Specifications 28
Configuring for Highest Accuracy M easurements 31
Chapter 2 Quick Start
To Prepare the Instrument for Use 35
To Connect Wiring to a Module 36
To Set the Time and Date 38
To Configure a M easurement Channel 39
To Monitor a Single Channel 40
To Close a Channel 41
If the Instrument Does Not Turn On 42
To Adjust the Carrying Handle 44
To Rack Mount the Instrument 45
Chapter 3 Front-Panel Overview
Front-Panel Menu Reference 49
To Unsecure for Calibration 51
To Secure Against Calibration 51
To Change the Security Code 52
Error Messages 52
To Perform a Zero Adjustment 53
To Apply Mx+B Scaling to M easurements 54
To Read the Relay Cycle Count 55
To Read a Digital Input Port 56
To Write to a Digital Output Port 57
To Read the Totalizer Count 58
To Output a DC Voltage 59
Chapter 4 Calibration Procedures
Agilent Technologies Calibration Services 63
Calibration Interval 63
Adjustment is Recommended 63
Time Required for Calibration 64
Automating Calibration Procedures 64
Recommended Test Equipment 65
Input Connections 66
Calibration Security 67
To Unsecure the Instrument Without the Security Code 68
Calibration Message 69
Calibration Count 69
Calibration Procedure 70
Aborting a Calibration in Progress 70
Test Considerations 71
Performance Verification Tests 72
Self-Test 73
Quick Performance Check 74
Performance Verification Tests 74
Internal DMM Verification Tests 75
Zero Offset Verification 75
Gain Verification 77
Optional AC Performance Verification Tests 80
Internal DMM Adjustments 81
Zero Adjustment 81
Gain Adjustment 82

- 10 Vdc Adjustment Procedure (Optional) 85
Plug-in Module Test Considerations 87
Relay Verification 88
Relay Cycle Count 88
34901A Relay Contact Resistance Verification (Optional) 89
34902A Relay Contact Resistance Verification (Optional) 96
34903A Relay Contact Resistance Verification (Optional) 101
34904A Relay Contact Resistance Verification (Optional) 102
34905A/06A Relay Contact Resistance Verification (Optional) 105
34908A Relay Contact Resistance Verification (Optional) 106
Thermocouple ReferenceJ unction (Optional) 112
Thermocouple ReferenceJ unction Verification 112
Thermocouple ReferenceJ unction Adjustments 113
34907A Analog Output 114
Analog Output Verification Test 114
Analog Output Adjustment 115

Chapter 5 Theory of Operation

System Block Diagram 119
Floating Logic 120
Memory 123
Earth-Referenced Logic 124
Power Supplies 125
Front Panel 127
Backplane 128
Analog Bus 128
Digital Bus 128
Internal DMM 129
DMM Block Diagram 129
Input 130
Input Amplifier 131
Ohms Current Source 133
AC Circuit 134
A-to-D Converter 136
Switch Modules 138
Switch Module Control 138
Relay Drivers 140
34901A 142
34902A 144
34903A 146
34904A 147
34905A/34906A 148
34908A 149
Multifunction Module 151
Multifunction Control 151
Totalizer 153
Analog Output 154
Digital I/O 155

Chapter 6 Service

Operating Checklist 159
Is the instrument inoperative? 159
Does the instrument fail self-test? 159
Is the Current measurement function inoperative? 159
Types of Service Available 160
Standard Repair Service (worldwide) 160
Express Exchange (U.S.A. only) 160
Repackaging for Shipment 161
Cleaning 161
Electrostatic Discharge (ESD) Precautions 162
Surface Mount Repair 162
To Replace the Power-Line Fuse 163
Chapter 6 Service (continued)
Troubleshooting Hints 163
Unit is Inoperative 163
Unit Reports Error 705 164
Isolating to an Assembly 164
Unit Fails Self-Test 164
Power Supplies 165
Self-Test Procedures 167
Power-On Self-Test 167
Complete Self-Test 167
Plug-in M odule Self-Test 167
Self-Tests 168
Battery Check and Replacement 172
To Verify the Battery 173
To Replace the Battery 173
Disassembly 174
General Disassembly 175
Internal DMM Disassembly 176
Front-Panel Chassis Disassembly 177
Additional Disassembly 178
Plug-in Module Disassembly 179
Chapter 7 Replaceable Parts
Replaceable Parts 182
To Order Replaceable Parts 182
34970A Mainframe 183
34970-66501 Main PC Assembly (A1) 184
34970-66502 F ront-Panel and K eyboard PC Assembly (A2) 189
34970-66503 Backplane PC Assembly (A3) 190 190
34970-66504 Internal DMM PC Assembly (A4) 191
34901A 20-Channel Multiplexer 196
34902A 16-Channel Multiplexer 200
34903A 20-Channel Actuator 202
34904A 4x8 Matrix 204
34905A/34906A RF Multiplexer 207
34907A Multifunction Module 209
34908A 40-Channel Multiplexer 213
Manufacturer's List 216

Chapter 8 Schematics

Agilent 34970A System Block Diagram 221
A1 Component Locator (top) 222
A1 Component Locator (bottom) 223
A1 Power Supply Schematic (Sheet 1 of 4) 224
A1 F loating Logic Schematic (Sheet 2 of 4) 225
A1 Earth Referenced Logic Schematic (Sheet 3 of 4) 226
A1 Memory Schematic (Sheet 4 of 4) 227
A2 Component Locator 228
A2 Display and Keyboard Schematic 229
A3 Component Locator 230
A3 Backplane Schematic 231
A4 Component Locator (top) 232
A4 Component Locator (bottom) 233
A4 Input and Protection Schematic (Sheet 1 of 4) 234
A4 Input Amplifier and Ohms Current Schematic (Sheet 2 of 4) 235
A4 AC Schematic (Sheet 3 of 4) 236
A4 A/D Converter Schematic (Sheet 4 of 4) 237
34901A 20-Channel Multiplexer Component Locator 238
34901A 20-Channel Multiplexer Schematic (Sheet 1 of 5) 239
34901A 20-Channel Multiplexer Schematic (Sheet 2 of 5) 240
34901A 20-Channel Multiplexer Schematic (Sheet 3 of 5) 241
34901A 20-Channel Multiplexer Schematic (Sheet 4 of 5) 242
34901A 20-Channel Multiplexer Schematic (Sheet 5 of 5) 243
34902A 16-Channel Multiplexer Component Locator 244
34902A 16-Channel Multiplexer Schematic (Sheet 1 of 4) 245
34902A 16-Channel Multiplexer Schematic (Sheet 2 of 4) 246
34902A 16-Channel Multiplexer Schematic (Sheet 3 of 4) 247
34902A 16-Channel Multiplexer Schematic (Sheet 4 of 4) 248
34903A 20-Channel Actuator Component Locator 249
34903A 20-Channel Actuator Schematic (Sheet 1 of 3) 250
34903A 20-Channel Actuator Schematic (Sheet 2 of 3) 251
34903A 20-Channel Actuator Schematic (Sheet 3 of 3) 252
34904A 4x8 Matrix Component Locator 253
34904A 4x8 Matrix Schematic (Sheet 1 of 3) 254
34904A 4x8 Matrix Schematic (Sheet 2 of 3) 255
34904A 4x8 Matrix Schematic (Sheet 3 of 3) 256
34905A/34906A RF Multiplexer Component Locator 257
34905A/34906A RF Multiplexer Schematic (Sheet 1 of 2) 258
34905A/34906A RF Multiplexer Schematic (Sheet 2 of 2) 259
34907A Multifunction M odule Component Locator 260
34907A Multifunction Module Schematic (Sheet 1 of 5) 261
34907A Multifunction Module Schematic (Sheet 2 of 5) 262
34907A Multifunction Module Schematic (Sheet 3 of 5) 263
34907A Multifunction Module Schematic (Sheet 4 of 5) 264
34907A Multifunction Module Schematic (Sheet 5 of 5) 265
34908A 40-Channel Multiplexer Component Locator 266 34908A 40-Channel Multiplexer Schematic (Sheet 1 of 3) 267
34908A 40-Channel Multiplexer Schematic (Sheet 2 of 3) 268
34908A 40-Channel Multiplexer Schematic (Sheet 3 of 3) 269

- DC, Resistance, and Temperature Accuracy Specifications, on page 16
- DC Measurement and Operating Characteristics, on page 17
- AC Accuracy Specifications, on page 18
- AC Measurement and Operating Characteristics, on page 19
- Measurement Rates and System Characteristics, on page 20
- Module Specifications: 34901A, 34902A, 34908A, 34903A, 34904A, on page 21 34905A, 34906A, on page 22
Typical AC Performance Graphs, on page 23 34907A, on page 24
- BenchLink Data Logger Software Specifications, on page 24
- Product and Module Dimensions, on page 25
- To Calculate Total Measurement Error, on page 26
- Interpreting Multimeter Specifications, on page 28
- Configuring for Highest Accuracy Measurements, on page 31

Specifications

- DC, Resistance, and Temperature Accuracy Specifications

\pm (\% of reading + \% of range) ${ }^{[1]}$ Includes measurement error, swit						
Function	Range ${ }^{[3]}$	Test Current or Burden Voltage	$\begin{gathered} 24 \text { Hour }{ }^{[2]} \\ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { Day } \\ 23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \end{gathered}$	Temperature Coefficient $/{ }^{\circ} \mathrm{C}$ $\begin{array}{r} 0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C} \\ 28^{\circ} \mathrm{C}-55^{\circ} \mathrm{C} \end{array}$
DC Voltage	$\begin{aligned} & 100.0000 \mathrm{mV} \\ & 1.000000 \mathrm{~V} \\ & 10.00000 \mathrm{~V} \\ & 100.0000 \mathrm{~V} \\ & 300.000 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.0030+0.0035 \\ & 0.0020+0.0006 \\ & 0.0015+0.0004 \\ & 0.0020+0.0006 \\ & 0.0020+0.0020 \end{aligned}$	$\begin{aligned} & 0.0040+0.0040 \\ & 0.0030+0.0007 \\ & 0.0020+0.0005 \\ & 0.0035+0.0006 \\ & 0.0035+0.0030 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0050+0.0040 \\ & 0.0040+0.0007 \\ & 0.0035+0.0005 \\ & 0.0045+0.0006 \\ & 0.0045+0.0030 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0005+0.0005 \\ & 0.0005+0.0001 \\ & 0.0005+0.0001 \\ & 0.0005+0.0001 \\ & 0.0005+0.0003 \end{aligned}$
Resistance ${ }^{[4]}$	$\begin{aligned} & 100.0000 \Omega \\ & 1.000000 \mathrm{k} \Omega \\ & 10.00000 \mathrm{k} \Omega \\ & 100.0000 \mathrm{k} \Omega \\ & 1.000000 \mathrm{M} \Omega \\ & 10.00000 \mathrm{M} \Omega \\ & 100.0000 \mathrm{M} \Omega \\ & \hline \end{aligned}$	```1 mA current source 1 mA \(100 \mu \mathrm{~A}\) \(10 \mu \mathrm{~A}\) \(5 \mu \mathrm{~A}\) 500 nA \(500 \mathrm{nA}\|\mid 10 \mathrm{M} \Omega\)```	$\begin{gathered} \hline 0.0030+0.0035 \\ 0.0020+0.0006 \\ 0.0020+0.0005 \\ 0.0020+0.0005 \\ 0.002+0.001 \\ 0.015+0.001 \\ 0.300+0.010 \end{gathered}$	$\begin{aligned} & 0.008+0.004 \\ & 0.008+0.001 \\ & 0.008+0.001 \\ & 0.008+0.001 \\ & 0.008+0.001 \\ & 0.020+0.001 \\ & 0.800+0.010 \end{aligned}$	$0.010+0.004$ $0.010+0.001$ $0.010+0.001$ $0.010+0.001$ $0.010+0.001$ $0.040+0.001$ $0.800+0.010$	$0.0006+0.0005$ $0.0006+0.0001$ $0.0006+0.0001$ $0.0006+0.0001$ $0.0010+0.0002$ $0.0030+0.0004$ $0.1500+0.0002$
DC Current 34901A Only	$\begin{aligned} & 10.00000 \mathrm{~mA} \\ & 100.0000 \mathrm{~mA} \\ & 1.000000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & <0.1 \mathrm{~V} \text { burden } \\ & <0.6 \mathrm{~V} \\ & <2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.005+0.010 \\ & 0.010+0.004 \\ & 0.050+0.006 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.030+0.020 \\ & 0.030+0.005 \\ & 0.080+0.010 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.050+0.020 \\ & 0.050+0.005 \\ & 0.100+0.010 \end{aligned}$	$\begin{aligned} & 0.002+0.0020 \\ & 0.002+0.0005 \\ & 0.005+0.0010 \end{aligned}$
Temperature	Type	Best Range Accuracy ${ }^{[5]}$		Extended Range Accuracy ${ }^{[5]}$		
Thermocouple ${ }^{[6]}$	B E J K N R S S	$1100^{\circ} \mathrm{C}$ to $1820^{\circ} \mathrm{C}$ $-150^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ $-150^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ $-100^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$ $-100^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$ to $1760^{\circ} \mathrm{C}$ $400^{\circ} \mathrm{C}$ to $1760^{\circ} \mathrm{C}$ $-100^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	$\begin{aligned} & 1.2^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C} \\ & 1.2^{\circ} \mathrm{C} \\ & 1.2^{\circ} \mathrm{C} \\ & 1.0^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 400^{\circ} \mathrm{C} \text { to } 1100^{\circ} \mathrm{C} \\ & -200^{\circ} \mathrm{C} \text { to }-150^{\circ} \mathrm{C} \\ & -210^{\circ} \mathrm{C} \text { to }-150^{\circ} \mathrm{C} \\ & -200^{\circ} \mathrm{C} \text { to }-100^{\circ} \mathrm{C} \\ & -200^{\circ} \mathrm{C} \text { to }-100^{\circ} \mathrm{C} \\ & -50^{\circ} \mathrm{Co} 300^{\circ} \mathrm{C} \\ & -50^{\circ} \mathrm{C} \text { to } 400^{\circ} \mathrm{C} \\ & -200^{\circ} \mathrm{C} \text { to }-100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.8^{\circ} \mathrm{C} \\ & 1.5^{\circ} \mathrm{C} \\ & 1.2^{\circ} \mathrm{C} \\ & 1.5^{\circ} \mathrm{C} \\ & 1.5^{\circ} \mathrm{C} \\ & 1.8^{\circ} \mathrm{C} \\ & 1.8^{\circ} \mathrm{C} \\ & 1.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.03^{\circ} \mathrm{C} \\ & 0.03^{\circ} \mathrm{C} \end{aligned}$
RTD	$\begin{aligned} & \mathrm{R}_{0} \text { from } 49 \Omega \\ & \text { to } 2.1 \mathrm{k} \Omega \end{aligned}$	$-200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$	$0.06{ }^{\circ} \mathrm{C}$			$0.003^{\circ} \mathrm{C}$
Thermistor	2.2 k, 5 k, 10 k	$-80^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$0.08^{\circ} \mathrm{C}$			$0.002^{\circ} \mathrm{C}$

[1] Specifications are for 1 hour warm up and $61 / 2$ digits
[2] Relative to calibration standards
[3] 20% over range on all ranges except 300 Vdc and 1 Adc ranges
[4] Specifications are for 4-wire ohms function or 2-wire ohms using Scaling to remove the offset. Without Scaling, add 4Ω additional error in 2 -wire ohms function.
[5] 1 year accuracy. For total measurement accuracy, add temperature probe error.
[6] Thermocouple specifications not guaranteed when 34907A module is present

DC Measurement and Operating Characteristics

DC Measurement Characteristics ${ }^{[1]}$	
DC Voltage	
Measurement Method:	Continuously Integrating, Multi-slope III A/D Converter
A/D Linearity:	0.0002% of reading $+0.0001 \%$ of range
Input Resistance:	
100 mV , 1 V , 10 V ranges	Selectable $10 \mathrm{M} \Omega$ or $>10 \mathrm{G} \Omega$
$100 \mathrm{~V}, 300 \mathrm{~V}$ ranges	$10 \mathrm{M} \Omega \pm 1 \%$
Input Bias Current:	$<30 \mathrm{pA}$ at $25^{\circ} \mathrm{C}$
Input Protection:	300 V on all ranges
Resistance	
Measurement Method:	Selectable 4-wire or 2-wire Ohms, Current source reference to LO input
Offset Compensation:	Selectable on $100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ ranges
Max. Lead Resistance:	10% of range per lead for 100Ω and $1 \mathrm{k} \Omega$ ranges. $1 \mathrm{k} \Omega$ on all other ranges
Input Protection:	300 V on all ranges
DC Current	
Shunt Resistance: Input Protection:	5Ω for $10 \mathrm{~mA}, 100 \mathrm{~mA} ; 0.1 \Omega$ for 1 A . 1.5A 250 V fuse on 34901A module
Thermocouple	
Conversion:	ITS-90 software compensation
Reference Junction Type:	Internal, Fixed, or External
Open T/C Check:	Selectable per channel. Open $>5 \mathrm{k} \Omega$
RTD	$\alpha=0.00385$ (DIN) and 0.00391
Thermistor	44004, 44007, 44006 series
Measurement Noise Rejection $60 \mathrm{~Hz}(50 \mathrm{~Hz}){ }^{[2]}$	
DC CMRR:	140 dB
Integration Time	Normal Mode Rejection ${ }^{[3]}$
200 PLC / 3.33s (4s)	110 dB [4]
100 PLC / 1.67s (2s)	105 dB [4]
20 PLC / 333 ms (400 ms)	100 dB [4]
10 PLC / 167 ms (200 ms)	$95 \mathrm{~dB}^{[4]}$
$2 \mathrm{PLC} / 33.3 \mathrm{~ms}(40 \mathrm{~ms})$	90 dB
$1 \mathrm{PLC} / 16.7 \mathrm{~ms}(20 \mathrm{~ms})$	60 dB
< 1 PLC	0 dB

DC Operating Characteristics ${ }^{[5]}$			
Function DCV, DCI, and Resistance:	Digits ${ }^{[6]}$	Readings/s	Additional Noise Error
	61/2	0.6 (0.5)	0\% of range
	$61 / 2$	6 (5)	0% of range
	51/2	60 (50)	0.001\% of range
	51/2	300	0.001% of range ${ }^{[7]}$
	41/2	600	0.01% of range ${ }^{[7]}$
Single Channel Measurement Rates ${ }^{[8]}$			
Function DCV, 2-Wire Ohms:	Resolution $61 / 2$ (10 PLC) 51⁄2 (1 PLC) 41⁄2 (0.02 PLC)		Readings/s
			6 (5)
			57 (47)
			600
Thermocouple:	$\begin{aligned} & 0.1^{\circ} \mathrm{C}(1 \mathrm{PLC}) \\ & \text { (0.02 PLC) } \end{aligned}$		$\begin{gathered} 57(47) \\ 220 \end{gathered}$
RTD, Thermistor:	$\begin{aligned} & 0.01^{\circ} \mathrm{C}(10 \mathrm{PLC}) \\ & 0.1^{\circ} \mathrm{C}(1 \mathrm{PLC}) \\ & 1^{\circ} \mathrm{C}(0.02 \mathrm{PLC}) \end{aligned}$		6 (5)
			57 (47)
			220

Autozero OFF Operation

Following instrument warm-up at calibration temperature $\pm 1^{\circ} \mathrm{C}$ and <10 minutes, add 0.0002% range additional error $+5 \mu \mathrm{~V}$.

Settling Considerations

Reading settling times are affected by source impedance, low dielectric absorption characteristics, and input signal changes.
[1] 300 Vdc isolation voltage (ch-ch, ch-earth)
[2] For $1 \mathrm{k} \Omega$ unbalance in LO lead
[3] For power line frequency $\pm 0.1 \%$
[4] For power line frequency $\pm 1 \%$, use 80 dB . For power line frequency $\pm 3 \%$, use 60 dB .
[5] Reading speeds for 60 Hz and (50 Hz) operation; autozero OFF
[6] $61 / 2$ digits $=22$ bits, $5^{1 / 2}$ digits= 18 bits, $41 / 2$ digits $=15$ bits
[7] Add $20 \mu \mathrm{~V}$ for DCV, $4 \mu \mathrm{~A}$ for DCI, or $20 \mathrm{~m} \Omega$ for resistance
[8] For fixed function and range, readings to memory, scaling and alarms off, autozero OFF

AC Accuracy Specifications

\pm (\% of reading + \% of range) ${ }^{[1]}$ Includes measurement error, switchir						
Function	Range ${ }^{[3]}$	Frequency	$\begin{gathered} 24 \operatorname{Hour}^{[2]} \\ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \text { Day } \\ 233^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C} \end{gathered}$	Temperature Coefficient $/{ }^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}-18^{\circ} \mathrm{C}$ $28^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$
True RMS AC Voltage	$\begin{aligned} & 100.0000 \mathrm{mV} \\ & \text { to } 100 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~Hz}-5 \mathrm{~Hz} \\ & 5 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz}-20 \mathrm{kHz} \\ & 20 \mathrm{kHz}-50 \mathrm{kHz} \\ & 50 \mathrm{kHz}-100 \mathrm{kHz} \\ & 100 \mathrm{kHz}-300 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1.00+0.03 \\ & 0.35+0.03 \\ & 0.04+0.03 \\ & 0.10+0.05 \\ & 0.55+0.08 \\ & 4.00+0.50 \end{aligned}$	$\begin{aligned} & 1.00+0.04 \\ & 0.35+0.04 \\ & 0.05+0.04 \\ & 0.11+0.05 \\ & 0.60+0.08 \\ & 4.00+0.50 \end{aligned}$	$\begin{aligned} & 1.00+0.04 \\ & 0.35+0.04 \\ & 0.06+0.04 \\ & 0.12+0.05 \\ & 0.60+0.08 \\ & 4.00+0.50 \end{aligned}$	$\begin{gathered} 0.100+0.004 \\ 0.035+0.004 \\ 0.005+0.004 \\ 0.011+0.005 \\ 0.060+0.008 \\ 0.20+0.02 \end{gathered}$
	300.0000 V	$\begin{aligned} & \hline 3 \mathrm{~Hz}-5 \mathrm{~Hz} \\ & 5 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz}-20 \mathrm{kHz} \\ & 20 \mathrm{kHz}-50 \mathrm{kHz} \\ & 50 \mathrm{kHz}-100 \mathrm{kHz} \\ & 100 \mathrm{kHz}-300 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00+0.05 \\ & 0.35+0.05 \\ & 0.04+0.05 \\ & 0.10+0.10 \\ & 0.55+0.20 \\ & 4.00+1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.00+0.08 \\ & 0.35+0.08 \\ & 0.05+0.08 \\ & 0.11+0.12 \\ & 0.60+0.20 \\ & 4.00+1.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00+0.08 \\ & 0.35+0.08 \\ & 0.06+0.08 \\ & 0.12+0.12 \\ & 0.60+0.20 \\ & 4.00+1.25 \end{aligned}$	$\begin{gathered} 0.100+0.008 \\ 0.035+0.008 \\ 0.005+0.008 \\ 0.011+0.012 \\ 0.060+0.020 \\ 0.20+0.05 \end{gathered}$
Frequency and Period ${ }^{[6]}$	$\begin{gathered} 100 \mathrm{mV} \\ \text { to } \\ 300 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3 \mathrm{~Hz}-5 \mathrm{~Hz} \\ & 5 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz}-40 \mathrm{~Hz} \\ & 40 \mathrm{~Hz}-300 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & 0.03 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & 0.03 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.05 \\ & 0.03 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline 0.005 \\ & 0.005 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$
True RMS AC Current 34901A Only	$\begin{gathered} 10.00000 \mathrm{~mA}^{[4]} \\ \text { and } \\ 1.000000 \mathrm{~A}^{[4]} \end{gathered}$	$\begin{aligned} & 3 \mathrm{~Hz}-5 \mathrm{~Hz} \\ & 5 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz}-5 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00+0.04 \\ & 0.30+0.04 \\ & 0.10+0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00+0.04 \\ & 0.30+0.04 \\ & 0.10+0.04 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00+0.04 \\ & 0.30+0.04 \\ & 0.10+0.04 \end{aligned}$	$\begin{aligned} & 0.100+0.006 \\ & 0.035+0.006 \\ & 0.015+0.006 \\ & \hline \end{aligned}$
	$100.0000 \mathrm{~mA}^{[7]}$	$\begin{aligned} & 3 \mathrm{~Hz}-5 \mathrm{~Hz} \\ & 5 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & 10 \mathrm{~Hz}-5 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1.00+0.5 \\ & 0.30+0.5 \\ & 0.10+0.5 \end{aligned}$	$\begin{aligned} & 1.00+0.5 \\ & 0.30+0.5 \\ & 0.10+0.5 \end{aligned}$	$\begin{aligned} & \hline 1.00+0.5 \\ & 0.30+0.5 \\ & 0.10+0.5 \end{aligned}$	$\begin{aligned} & \hline 0.100+0.06 \\ & 0.035+0.06 \\ & 0.015+0.06 \end{aligned}$

Additional Low Frequency Error for ACV, ACI (\% of reading)

Frequency	AC Filter Slow	AC Filter Medium	AC Filter
$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	0	0.74	-
$20 \mathrm{~Hz}-40 \mathrm{~Hz}$	0	0.22	-
$40 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0.06	0.73
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0	0.01	0.22
$200 \mathrm{~Hz}-1 \mathrm{kHz}$	0	0	0.18
$>1 \mathrm{kHz}$	0	0	0

Additional Error for Frequency, Period (\% of reading)

Frequency	$\mathbf{6} 1 / 2$ Digits	$\mathbf{5} 1 / 2$ Digits	$\mathbf{4} 1 / 2$ Digits
$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	0	0.12	0.12
$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	0	0.17	0.17
$10 \mathrm{~Hz}-40 \mathrm{~Hz}$	0	0.2	0.2
$40 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0.06	0.21
$100 \mathrm{~Hz}-300 \mathrm{~Hz}$	0	0.03	0.21
$300 \mathrm{~Hz}-1 \mathrm{kHz}$	0	0.01	0.07
$>1 \mathrm{kHz}$	0	0	0.02

[1] Specifications are for 1 hour warm up and $61 / 2$ digits, Slow ac filter
[2] Relative to calibration standards
[3] 20% over range on all ranges except 300 Vac and 1 Aac ranges
[4] For sinewave input > 5% of range. For inputs from 1% to 5% of range and $<50 \mathrm{kHz}$, add 0.1% of range additional error.
[5] Typically 30% of reading error at 1 MHz , limited to $1 \times 10^{8} \mathrm{~V} \mathrm{~Hz}$
[6] Input > 100 mV . For 10 mV inputs, multiply \% of reading error $x 10$.
[7] Specified only for inputs > 10 mA

AC Measurement and Operating Characteristics

AC Measurement Characteristics ${ }^{[1]}$

True RMS AC Voltage
Measurement Method:
Crest Factor:
Additional Crest Factor
Errors (non-sinewave): ${ }^{[2]}$

AC Filter Bandwidth:
Slow
Medium
Fast
Input Impedance:
Input Protection:
AC-coupled True RMS - measures the ac component of input with up to 300 Vdc of bias on any range Maximum 5:1 at Full Scale

Crest Factor 1-2: 0.05\% of reading Crest Factor 2-3: 0.15\% of reading Crest Factor 3-4: 0.30% of reading Crest Factor 4-5: 0.40\% of reading
$3 \mathrm{~Hz}-300 \mathrm{kHz}$
$20 \mathrm{~Hz}-300 \mathrm{kHz}$
$200 \mathrm{~Hz}-300 \mathrm{kHz}$
$1 \mathrm{M} \Omega \pm 2 \%$, in parallel with 150 pF 300 Vrms on all ranges

Frequency and Period

Measurement Method:
Voltage Ranges:
Gate Time:
Measurement Timeout:
Reciprocal counting technique Same as AC Voltage function $1 \mathrm{~s}, 100 \mathrm{~ms}$, or 10 ms Selectable 3 Hz, 20 Hz, 200 Hz LF limit
True RMS AC Current

Measurement Method:

Shunt Resistance: Input Protection:

Direct coupled to the fuse and shunt. AC-coupled True RMS measurement (measures the ac component only) 5Ω for $10 \mathrm{~mA} ; 0.1 \Omega$ for $100 \mathrm{~mA}, 1 \mathrm{~A}$ 1.5A 250 V fuse on 34901 A module

Measurement Noise Rejection ${ }^{[3]}$
AC CMRR:
70 dB

Measurement Considerations (Frequency and Period)

All frequency counters are susceptible to error when measuring low-voltage, low-frequency signals. Shielding inputs from external noise pickup is critical for minimizing measurement errors.

AC Operating Characteristics ${ }^{[4]}$		
Function	Digits ${ }^{[5]}$ Readings/s	AC Filter
ACV, ACI:	$61 / 2 \quad 7 \mathrm{sec} /$ reading	Slow (3 Hz)
	61/2 1	Medium (20 Hz)
	$61 / 2 \quad 8^{[6]}$	Fast (200 Hz)
	61/2 $\quad 10$	Fast (200 Hz)
	$61 / 2 u ̈ x ¢ 31 ¢ ¢ 33$ çä 32 é $100{ }^{[7]}$	Fast (200 Hz)
Single Channel Measurement Rates ${ }^{[8]}$		
Function ACV:	Resolution 61/2 Slow (3 Hz)	Readings/s
		0.14
	$61 / 2$ Medium (20 Hz)	1
	$61 / 2$ Fast (200 Hz) $61 / 2 u ̈ x ̧ ̧ 31$ ç 33 Çä $32 e ́{ }^{[7]}$	${ }^{8}$
		100
Frequency, Period:	: $\quad 61 / 2$ Digits (1s gate)	0.77
	$61 / 2$ Digits (1s gate)	1
	$51 / 2$ Digits (100 ms)	2.5
	$51 / 2$ Digits (100 ms) ${ }^{[7]}$	9
	$41 / 2$ Digits (10 ms)	3.2
	$41 / 2$ Digits (10 ms) ${ }^{[7]}$	70

[1] 300 Vrms isolation voltage (ch-ch, ch-earth)
[2] For frequencies below 100 Hz , slow AC filter specified for sinewave input only
[3] For $1 \mathrm{k} \Omega$ unbalance in LO lead
[4] Maximum reading rates for 0.01% of ac step additional error. Additional settling delay required when input dc level varies.
[5] $61 / 2$ digits $=22$ bits, $51 / 2$ digits $=18$ bits, $41 / 2$ digits $=15$ bits
[6] For external trigger or remote operation using default settling delay (Delay Auto)
[7] Maximum limit with default settling delays defeated
[8] For fixed function and range, readings to memory, scaling and alarms turned off

M easurement Rates and System Characteristics

Single Channel Measurement Rates ${ }^{[1]}$ [2]		
Function DCV, 2-Wire Ohms	Resolution $61 / 2$ (10 PLC) 51⁄2 (1 PLC) $41 / 2(0.02$ PLC)	Readings/s $\begin{aligned} & 6(5) \\ & 53(47) \\ & 490 \end{aligned}$
Thermocouple:	$\begin{aligned} & 0.1^{\circ} \mathrm{C}(1 \mathrm{PLC}) \\ & \text { (0.02 PLC) } \end{aligned}$	$\begin{aligned} & 49(47) \\ & 280 \end{aligned}$
RTD, Thermistor:	$0.01^{\circ} \mathrm{C}(10 \mathrm{PLC})$ $0.1^{\circ} \mathrm{C}(1 \mathrm{PLC})$ $1^{\circ} \mathrm{C}(0.02 \mathrm{PLC})$	$\begin{aligned} & 6(5) \\ & 47(47) \\ & 280 \end{aligned}$
ACV:	$\begin{aligned} & 61 / 2 \text { Slow }(3 \mathrm{~Hz}) \\ & 61 / 2 \text { Medium }(20 \mathrm{~Hz}) \\ & 61 / 2 \text { Fast }(200 \mathrm{~Hz}) \\ & 61 / 2 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 1 \\ & 8 \\ & 100 \end{aligned}$
Frequency, Period:	$61 / 2$ Digits (1s gate) $51 / 2$ Digits (100 ms) $41 / 2$ Digits (10 ms)	$\begin{aligned} & 1 \\ & 9 \\ & 70 \end{aligned}$
System Speeds ${ }^{[4]}$		
INTO Memory		Ch / s
Single Channel D		490
34902A Scanning		250
34907A Scanning	tal Input	250
34902A Scanning	, scaling and 1 alarm fail	220
34907A Scanning	alize	170
34902A Scanning	perature	160
34902A Scanning	${ }^{\text {[3] }}$	100
34902A Scanning	/Ohms, alternate channels	90
34901A/34908A	ning DCV	60
INTO and OUT of Memory to GPIB or RS-232 (INIT, FETCh)		
34902A Scanning		180
34902A Scanning	with Time stamp	150
OUT of Memory to GPIB ${ }^{[5]}$		
Readings		800
Readings with Tim	amp	450
Readings with all	nat Options ON	310
OUT of Memory to RS-232		
Readings		600
Readings with Tim	amp	320
Readings with all	at Options ON	230
DIRECT to GPIB or RS-232		
Single Channel DCV 34902A Scanning DCV		440
		200
Single Channel MEAS DCV 10 or MEAS DCV 1		25
Single Channel MEAS DCV or MEAS OHMS		12

System Characteri	
Scan Triggering Scan Count: Scan Interval: Channel Delay: External Trig Delay: External Trig Jitter:	1 to 50,000 or continuous 0 to 99 hours; 1 ms step size 0 to 60 seconds/channel; 1 ms step size $<300 \mu \mathrm{~s}$; With Monitor On, < 200 ms $<2 \mathrm{~ms}$
Alarms Alarm Outputs: Latency:	4 TTL compatible. Selectable TTL logic HI or LO on Fail 5 ms (typical)
Memory Readings: Time Stamp Resolution: Relative Absolute States: Alarm Queue:	Battery Backed, 4 year typical life ${ }^{[6]}$ 50,000 readings 1 ms 1 s 5 instrument states Up to 20 events
General Specifications Power Supply: Power Line Frequency: Power Consumption: Operating Environment: Storage Environment: Weight (Mainframe): Safety: RFI and ESD: Warranty:	$100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V} \pm 10 \%$ 45 Hz to 66 Hz automatically sensed (12 W) 25 VA peak Full accuracy for $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Full accuracy to 80% R.H. at $40^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ [6] Net: 3.6 kg (8.0 lbs) Conforms to CSA, UL-1244, IEC 1010 Cat I CISPR 11, IEC 801/2/3/4 3 years
[1] Reading speeds for 60 Hz and (50 Hz) operation; autozero OFF [2] For fixed function and range, readings to memory, scaling and alarms off, autozero OFF [3] Maximum limit with default settling delays defeated [4] Speeds are for $41 / 2$ digits, delay 0 , display off, autozero off. Using 115 kbaud RS-232 setting. [5] Assumes relative time format (time since start of scan) [6] Storage at temperatures above $40^{\circ} \mathrm{C}$ will decrease battery life	
This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme à la norme NMB-001 du Canada.	
N10149	

Module Specifications

34901A, 34902A, 34908A, 34903A, 34904A

	Multiplexer			Actuator	Matrix
General	34901A	34902A	34908A	34903A	34904A
Number of Channels	20+2	16	40	20	4×8
	2/4 wire	2/4 wire	1 wire	SPDT	2 wire
Connects to Internal DMM	Yes	Yes	Yes	No	No
Scanning Speed ${ }^{[1]}$	$60 \mathrm{ch} / \mathrm{s}$	$250 \mathrm{ch} / \mathrm{s}$	$60 \mathrm{ch} / \mathrm{s}$		
Open/Close Speed	120/s	120/s	70/s	120/s	120/s
Maximum Input					
Voltage (dc, ac rms)	300 V				
Current (dc, ac rms)	1 A	50 mA	1 A	1 A	1 A
Power (W, VA)	50 W	2 W	50 W	50 W	50 W
Isolation (ch-ch, ch-earth) dc, ac rms	300 V				
DC Characteristics					
Offset Voltage ${ }^{[2]}$	$<3 \mu \mathrm{~V}$	$<6 \mu \mathrm{~V}$	$<3 \mu \mathrm{~V}$	$<3 \mu \mathrm{~V}$	$<3 \mu \mathrm{~V}$
Initial Closed Channel $\mathrm{R}^{[2]}$	$<1 \Omega$	$<1 \Omega$	$<1 \Omega$	$<0.2 \Omega$	$<1 \Omega$
Isolation (ch-ch, ch-earth)	$>10 \mathrm{G} \Omega$				
AC Characteristics					
Bandwidth	10 MHz				
Ch-Ch Cross Talk (dB) ${ }^{[3]} \quad 10 \mathrm{MHz}$	-45	-45	$-18{ }^{[4]}$	-45	-33
Capacitance HI to LO	< 50 pF	< 50 pF	< 50 pF	$<10 \mathrm{pF}$	< 50 pF
Capacitance LO to Earth	<80 pF	$<80 \mathrm{pF}$	< 80 pF	$<80 \mathrm{pF}$	<80 pF
Volt-Hertz Limit	10^{8}	10^{8}	10^{8}	10^{8}	10^{8}
Other					
T/C Cold Junction Accuracy ${ }^{[2] ~[5] ~} \quad$ (typical)	$0.8{ }^{\circ} \mathrm{C}$	$0.8{ }^{\circ} \mathrm{C}$	$0.8{ }^{\circ} \mathrm{C}{ }^{[7]}$		
Switch Life No Load (typical)	100M	100M	100M	100M	100M
Switch Life Rated Load (typical) ${ }^{[6]}$	100k	100k	100k	100k	100k
Temperature Operating	All Modules $-0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$				
Temperature Storage	All Modules - $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				
Humidity (non-condensing)	All Modules - $40^{\circ} \mathrm{C} / 80 \%$ R.H.				

[1] Speeds are for $41 / 2$ digits, delay 0, display off, autozero off. Using 115 kbaud RS- 232 setting.
[2] Errors included in the DMM measurement accuracy specifications
[3] 50Ω source, 50Ω load
[4] Isolation within channel 1 to 20 or 21 to 40 banks is -40 dB
[5] Thermocouple specifications not guaranteed when 34907A module is present
[6] Applies to resistive loads only
[7] Thermocouple measurements not recommended with 34908A module due to common LO configuration.

Module Specifications
34905A, 34906A

	RF Multiplexer	
General	34905A	34906A
Number of Channels	$\begin{gathered} \hline \text { Dual } 1 \times 4 \\ 50 \Omega \end{gathered}$	$\begin{gathered} \hline \text { Dual } 1 \times 4 \\ 75 \Omega \end{gathered}$
Open/Close Speed	60/s	
Maximum Input		
Voltage (dc, ac rms)	42 V	
Current (dc, ac rms)	0.7 A	
Power (W, VA)	20 W	
DC Characteristics		
Offset Voltage ${ }^{[1]}$	$<6 \mu \mathrm{~V}$	
Initial Closed Channel R ${ }^{[1]}$	$<0.5 \Omega$	
Isolation (ch-ch, ch-earth)	$>1 \mathrm{G} \Omega$	
Other		
Switch Life \quad No Load (typical)	5M	
Switch Life Rated Load (typical) ${ }^{[2]}$	100k	
Temperature Operating	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	
Temperature Storage	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
Humidity (non-condensing)	$40{ }^{\circ} \mathrm{C} / 80 \%$ R.H.	

The ac performancegraphs areshown on thefollowing page

AC Characteristics	34905A	34906A
Bandwidth ${ }^{[3]}$	2 GHz	2 GHz
Insertion Loss (dB) $\quad 10 \mathrm{MHz}$	-0.1	-0.1
100 MHz	-0.4	-0.4
500 MHz	-0.6	-0.5
1 GHz	-1.0	-1.0
1.5 GHz	-1.2	-1.5
2 GHz	-3.0	-2.0
SWR 10 MHz	1.02	1.02
100 MHz	1.05	1.05
500 MHz	1.20	1.25
1 GHz	1.20	1.40
1.5 GHz	1.30	1.40
2 GHz	1.40	2.00
Ch-Ch Cross Talk (dB) ${ }^{[4]} 10 \mathrm{MHz}$	-100	-85
100 MHz	-85	-75
500 MHz	-65	-65
1 GHz	-55	-50
1.5 GHz	-45	-40
2 GHz	-35	-35
Risetime	< 300 ps	
Signal Delay	$<3 \mathrm{~ns}$	
Capacitance $\quad \mathrm{HI}$ to LO	$<20 \mathrm{pF}$	
Volt-Hertz Limit	10^{10}	

[^1]
Typical AC Performance Graphs 34905A, 34906A

Insertion Loss (75 Ω)

___ Direct to Module
------ Using provided adapter cables

VSWR (50 $)$

VSWR (75 Ω)

Crosstalk (50 Ω)

Crosstalk (75 Ω)

Module Specifications 34907A

Digital Input / Output

Port 1, 2:	8 Bit, input or output, non-isolated
Vin(L):	$<0.8 V$ (TTL)
Vin(H):	$>2.0 \mathrm{~V}$ (TTL)
Vout(L):	$<0.8 \mathrm{~V}$ @ lout $=-400 \mathrm{~mA}$
Vout(H):	$>2.4 \mathrm{~V}$ @ lout $=1 \mathrm{~mA}$
Vin(H) Max:	$<42 \mathrm{~V}$ with external open drain pull-up
Alarming:	Maskable pattern match or state change
Speed	4 ms (max) alarm sampling
Latency	5 ms (typical) to 34970A alarm output
Read/Write Speed:	$95 / \mathrm{s}$

Totalize Input

Maximum Count:	$2^{26}-1(67,108,863)$
Totalize Input:	$100 \mathrm{kHz}(\max)$, rising or falling edge,
	programmable
Signal Level:	$1 \mathrm{Vp-p}(\min)$
	$42 \mathrm{Vpk}(\max)$
Threshold:	0 VFor TTL, jumper selectable
Gate Input:	TTL-Hi, TTL-Lo, or none
Count Reset:	Manual or Read + Reset
Read Speed:	$85 / \mathrm{s}$

Analog Voltage (DAC) Output	
DAC 1, 2:	$\pm 12 \mathrm{~V}$, non-isolated (earth referenced)
Resolution:	1 mV
lout:	10 mA max ${ }^{[1]}$
Settling Time:	1 ms to 0.01% of output
Accuracy:	$\pm(\%$ of output +mV$)$
1 year $\pm 5^{\circ} \mathrm{C}$	$0.25 \%+20 \mathrm{mV}$
Temp Coefficient:	$\pm(0.015 \%+1 \mathrm{mV}) /{ }^{\circ} \mathrm{C}$

[1] Limited to 40 mA total for all three slots (six DAC channels)

Software Specifications

BenchLink Data Logger (not included with Option 001)

System Requirements ${ }^{[1]}$
PC Hardware: $\quad 486,66 \mathrm{MHz}, 16 \mathrm{MB}$ RAM, 12 MB disk space
Operating System: \quad Windows ${ }^{\circledR} 3.1$, Windows 95, Windows $\mathrm{NT}^{\circledR} 4.0$
Computer Interfaces ${ }^{[2]}$
GPIB: Agilent 82335B, 82340A/B/C, 82341A/B/C/D
National Instruments AT-GPIB/TNT, PCI-GPIB
Agilent E5810A (Windows 98/Me/ NT/2000/XP Professional)
PC COM 1 to 4
RS-232 (Serial Port):
Performance ${ }^{[3]}$
Scan and Save to Disk: $100 \mathrm{ch} / \mathrm{s}$, 2 strip charts displayed
[1] Software provided on CD-ROM; includes utility to create floppy disks for installation
[2] Interface and drivers must be purchased and installed separately
[3] 90 MHz Pentium ${ }^{\circledR}$, 20 MB RAM

Product and Module Dimensions

To Calculate Total M easurement Error

Each specification includes correction factors which account for errors present due to operational limitations of the internal DMM. This section explains these errors and shows how to apply them to your measurements. Refer to "I nterpreting Internal DMM Specifications," starting on page 28, to get a better understanding of the terminology used and to help you interpret the internal DMM's specifications.

The internal DMM's accuracy specifications are expressed in the form: (\% of reading + \% of range). In addition to the reading error and range error, you may need to add additional errors for certain operating conditions. Check the list below to make sure you indude all measurement errors for a given function. Also, make sure you apply the conditions as described in the footnotes on the specification pages.

- If you are operating the internal DMM outside the $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range specified, apply an additional temperature coefficient error.
- F or dc voltage, dc current, and resistance measurements, you may need to apply an additional reading speed error.
- F or ac voltage and ac current measurements, you may need to apply an additional low frequency error or crest factor error.

Understanding the " \% of reading "Error The reading error compensates for inaccuracies that result from the function and range you select, as well as the input signal level. The reading error varies according to the input level on the selected range. This error is expressed in percent of reading. The following table shows the reading error applied to the internal DMM's 24-hour dc voltage specification.

Range	Input Level	Reading Error (\% of reading)	Reading Error Voltage
10 Vdc	10 Vdc	0.0015	$\leq 150 \mu \mathrm{~V}$
10 Vdc	1 Vdc	0.0015	$\leq 15 \mu \mathrm{~V}$
10 Vdc	0.1 Vdc	0.0015	$\leq 1.5 \mu \mathrm{~V}$

Understanding the "\% of range"Error The rangeerror compensates for inaccuracies that result from the function and range you select. The range error contributes a constant error, expressed as a percent of range, independent of the input signal level. The following table shows the range error applied to the DMM's 24 -hour dc voltage specification.

Range	Input Level	Range Error (\% of range)	Range Error Voltage
10 Vdc	10 Vdc	0.0004	$\leq 40 \mu \mathrm{~V}$
10 Vdc	1 Vdc	0.0004	$\leq 40 \mu \mathrm{~V}$
10 Vdc	0.1 Vdc	0.0004	$\leq 40 \mu \mathrm{~V}$

Total Measurement Error To compute the total measurement error, add the reading error and range error. You can then convert the total measurement error to a "percent of input" error or a "ppm (part-permillion) of input" error as shown below.

$$
\begin{aligned}
& \% \text { of input error }=\frac{\text { Total Measurement Error }}{\text { Input Signal Level }} \times 100 \\
& \text { ppm of input error }=\frac{\text { Total Measurement Error }}{\text { Input Signal Level }} \times 1,000,000
\end{aligned}
$$

Example: Computing Total Measurement Error

Assume that a 5 Vdc signal is input to the DMM on the 10 Vdc range. Compute the total measurement error using the 90 -day accuracy specification of $\pm(0.0020 \%$ of reading $+0.0005 \%$ of range $)$.

Reading Error	$=0.0020 \% \times 5 \mathrm{Vdc}$	$=100 \mu \mathrm{~V}$
Range Error	$=0.0005 \% \times 10 \mathrm{Vdc}$	$=50 \mu \mathrm{~V}$
Total Error	$=100 \mu \mathrm{~V}+50 \mu \mathrm{~V}$	$\begin{aligned} & = \pm 150 \mu \mathrm{~V} \\ & = \pm 0.0030 \% \text { of } 5 \mathrm{Vdc} \\ & = \pm 30 \mathrm{ppm} \text { of } 5 \mathrm{VVc} \end{aligned}$

Interpreting Internal DMM Specifications

This section is provided to give you a better understanding of the terminology used and will help you interpret the internal DMM's specifications.

Number of Digits and Overrange

The "number of digits" specification is the most fundamental, and sometimes, the most confusing characteristic of a multimeter. The number of digits is equal to the maximum number of " 9 ' s " the multimeter can measure or display. This indicates the number of full digits. Most multimeters have the ability to overrange and add a partial or "1/2" digit.

For example, the internal DMM can measure 9.99999 Vdc on the 10 V range. This represents six full digits of resolution. The internal DMM can also overrange on the 10 V range and measure up to a maximum of 12.00000 Vdc . This corresponds to a $61 / 2$-digit measurement with 20% overrange capability.

Sensitivity

Sensitivity is the minimum level that the multimeter can detect for a given measurement. Sensitivity defines the ability of the multimeter to respond to small changes in the input level. F or example, suppose you are monitoring a 1 mVdc signal and you want to adjust the level to within $\pm 1 \mu \mathrm{~V}$. To be able to respond to an adjustment this small, this measurement would require a multimeter with a sensitivity of at least $1 \mu \mathrm{~V}$. You could use a $61 / 2$-digit multimeter if it has a 1 Vdc or smaller range. You could also use a 41/2-digit multimeter with a 10 mVdc range.

For ac voltage and ac current measurements, note that the smallest value that can be measured is different from the sensitivity. For the internal DMM, these functions are specified to measure down to 1% of the selected range. For example, the internal DMM can measure down to 1 mV on the 100 mV range.

Resolution

Resolution is the numeric ratio of the maximum displayed value divided by the minimum displayed value on a selected range. Resolution is often expressed in percent, parts-per-million (ppm), counts, or bits. F or example, a $61 / 2$-digit multimeter with 20% overrange capability can display a measurement with up to $1,200,000$ counts of resolution. This corresponds to about 0.0001% (1 ppm) of full scale, or 21 bits including the sign bit. All four specifications are equivalent.

Accuracy

Accuracy is a measure of the "exactness" to which the internal DMM's measurement uncertainty can be determined relativeto the calibration reference used. Absolute accuracy includes the Internal DMM's relative accuracy specification plus the known error of the calibration reference relative to national standards (such as the U.S. National Institute of Standards and Technol ogy). To be meaningful, the accuracy specifications must be accompanied with the conditions under which they are valid. These conditions should include temperature, humidity, and time.

There is no standard convention among multimeter manufacturers for the confidence limits at which specifications are set. The table below shows the probability of non-conformance for each specification with the given assumptions.

Specification Criteria	Probability of Failure
Mean ± 2 sigma	4.5%
Mean ± 3 sigma	0.3%

Variations in performance from reading to reading, and instrument to instrument, decrease for increasing number of sigma for a given specification. This means that you can achieve greater actual measurement precision for a specific accuracy specification number. The 34970A is designed and tested to meet performance better than mean ± 3 sigma of the published accuracy specifications.

Chapter 1 Specifications

Interpreting Internal DMM Specifications

24-Hour Accuracy

The 24-hour accuracy specification indicates the internal DMM's relative accuracy over its full measurement range for short time intervals and within a stable environment. Short-term accuracy is usually specified for a 24 -hour period and for a $\pm 1^{\circ} \mathrm{C}$ temperature range.

90-Day and 1-Year Accuracy

These long-term accuracy specifications are valid for a $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range. These specifications include the initial calibration errors plus the internal DMM's long-term drift errors.

Temperature Coefficients

Accuracy is usually specified for a $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range. This is a common temperature range for many operating environments. You must add additional temperature coefficient errors to the accuracy specification if you are operating the multimeter outside a $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range (the specification is per ${ }^{\circ} \mathrm{C}$).

Configuring for Highest Accuracy Measurements

The measurement configurations shown below assume that the internal DMM is in its F actory Reset state. It is also assumed that manual ranging is enabled to ensure proper full scale range selection.

DC Voltage, DC Current, and Resistance Measurements:

- Set the resolution to 6 digits (you can use the 6 digits slow mode for further noise reduction).
- Set the input resistance to greater than $10 \mathrm{G} \Omega$ (for the $100 \mathrm{mV}, 1 \mathrm{~V}$, and 10 V ranges) for the best dc voltage accuracy.
- Use 4-wire ohms and enable offset compensation for the best resistance accuracy.

AC Voltage and AC Current Measurements:

- Set the resolution to 6 digits.
- Select the slow ac filter (3 Hz to 300 kHz).

Frequency and Period Measurements:

- Set the resolution to 6 digits.

2

Quick Start

Quick Start

One of the first things you will want to do with your instrument is to become acquainted with the front panel. We have written the exercises in this chapter to prepare the instrument for use and help you get familiar with some of its front-panel operations.

The front panel has several groups of keys to select various functions and operations. A few keys have a shifted function printed in blue below the key. To perform a shifted function, press shifi (the SHIFT annunciator will turn on). Then, press the key that has the desired label below it. For example, to select the Utility Menu, press shitf atureces.

If you accidentally press shift, just press it again to turn off the SHIFT annunciator.

This chapter is divided into the following sections:

- To Prepare the Instrument for Use, on page 35
- To Connect Wiring to a Module, on page 36
- To Set the Time and Date, on page 38
- To Configure a M easurement Channel, on page 39
- To Monitor a Single Channel, on page 40
- To Close a Channel, on page 41
- If the Instrument Does Not Turn On, on page 42
- To Adjust the Carrying Handle, on page44
- To Rack Mount the Instrument, on page45

To Prepare the Instrument for Use

1 Check the list of supplied items.

Verify that you have received the following items with your instrument. If anything is missing, contact your nearest Agilent Technologies Sales Office.
\square One power cord.
\square One User's Guide
\square This Service Guide.
\square One Quick Reference Guide.
\square Certificate of Calibration (if you ordered the internal DMM).
\square Quick Start Kit (if you ordered the internal DMM):

- One RS-232 cable.
- BenchLink Data Logger Software CD-ROM.
- OneJ -type thermocouple and a flatblade screwdriver.

Any plug-in modules that you ordered are delivered in a separate shipping container.
$\mathrm{On} / \mathrm{Standby}$
Switch
WARNING
Note that this switch is Standby only. To disconnect the mains from the instrument, remove the power cord.

2 Connect the power cord and turn on the instrument.
The front-panel display will light up briefly while the instrument performs its power-on self-test. The GPIB address is displayed. The instrument initially powers up with all measurement channels turned off. To review the power-on display with all annunciators turned on, hold down shift as you turn on the instrument. If the instrument does not turn on properly, see page 42.

3 Perform a complete self-test.

The complete self-test performs a more extensive set of tests than those performed at power-on. Hold down Shifi as you turn on the instrument and hold down the key until you hear a long beep. The self-test will begin when you release the key following the beep.

To Connect Wiring to a Module

1 Remove the module cover.

3 Route wiring through strain relief.

5 Install the module into mainframe.

2 Connect wiring to the screw terminals.

4 Replace the module cover.

Wiring Hints...

- For detailed information on each module, refer to the 34970A User's Guide.
- To reduce wear on the internal DMM relays, wire like functions on adjacent channels.
- Use shielded twisted pair Teflon ${ }^{\circledR}$ insulated cables to reduce settling and noise errors.
- The diagrams on the next page show how to connect wiring to a multiplexer module for each measurement function.

Thermocouple

Thermocouple Types: B, E, J, K, N, R, S, T

2-Wire Ohms / RTD / Thermistor

Ranges: $100,1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{M}, 10 \mathrm{M}, 100 \mathrm{M} \Omega$
RTD Types: $0.00385,0.00391$
Thermistor Types: $2.2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}$

Valid only on channels 21 and 22 on the 34901A. Ranges: $10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}$

DC Voltage / AC Voltage / F requency

Ranges: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}$

4-Wire Ohms / RTD

Channel \boldsymbol{n} (source) is automatically paired with Channel $\boldsymbol{n + 1 0}$ (sense) on the 34901A or Channel $\boldsymbol{n + 8}$ (sense) on the 34902A.

Ranges: 100, 1 k, $10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{M}, 10 \mathrm{M}, 100 \mathrm{M} \Omega$ RTD Types: $0.00385,0.00391$

To Set the Time and Date

All readings during a scan are automatically time stamped and stored in non-volatile memory. In addition, alarm data is time stamped and stored in a separate non-volatile memory queue.

1 Set the time of day.
Use \square and D to select the field to modify and turn the knob to change the value. You can also edit the AM/PM field.

```
TIME 03:45 PM
```


2 Set the date.

Use \square and D to select the field to modify and turn the knob to change the value.

```
JUNE O1 2002
```


To Configure a Measurement Channel

Use this general procedure to configure a measurement channel.

1 Select the channel.

Turn the knob until the desired channel is shown on the right side of front-panel display. The channel number is a three-digit number; the left-most digit represents the slot number (100, 200, or 300) and the two digits on the right indicate the channel number (102, 110, etc.).

Note: You can use \square and D to skip to the beginning of the previous or next slot.

2 Select the measurement parameters for the selected channel.

Use the knob to scroll through the measurement choices on each level of the menu. When you press teesule to make your selection, the menu automatically guides you through all relevant choices to configure a measurement on the selected function. When you have finished configuring the parameters, you are automatically exited from the menu.

The present selection (or default) is displayed in full bright for easy identification. When you make a different selection, the new choice is shown in full bright and it becomes the default selection. The order of the choices always remains the same; however, you always enter the menu at the present (full-bright) setting for each parameter.

Note: The menu will timeout after about 20 seconds of inactivity and any changes made previously will take effect.

Chapter 2 Quick Start

To Monitor a Single Channel

To Monitor a Single Channel

You can use the Monitor function to continuously take readings on a single channel, even during a scan. This feature is used during front panel calibration procedures.

1 Select the channel to be monitored.

Only one channel can be monitored at a time but you can change the channel being monitored at any time by turning the knob.

2 Enable monitoring on the selected channel.

Any channel that can be "read" by the instrument can be monitored (the MON annunciator turns on). This includes any combination of temperature, voltage, resistance, current, frequency, or period measurements on multiplexer channels. You can also monitor a digital input port or the totalizer count on the multifunction module.

To disablemonitoring, press Mon again.

To Close a Channel

On the multiplexer and switch modules, you can close and open individual relays on the module. However, note that if you have already configured any multiplexer channels for scanning, you cannot independently close and open individual relays on that module.

1 Select the channel.

Turn the knob until the desired channel is shown on the right side of front-panel display. For this example, select channel 213.

2 Close the selected channel.

3 Open the selected channel.

Note: $\begin{gathered}\text { Grad } \\ \text { fesid } \\ \text { will sequentially open all channels on the module in the }\end{gathered}$ selected slot.

The table bel ow shows the low-level control operations available for each of the plug-in modules.

Plug-In Module	Close	Open	Read	Write	(soon), Mon
34901A 20-Channel Mux	\bullet	\bullet	\bullet		\bullet
34902A 16-Channel Mux	\bullet	\bullet	\bullet		\bullet
34908A 40-Channel Single-Ended Mux ${ }^{[1]}$	\bullet	\bullet	\bullet		\bullet
34903A 20-Channel Actuator	\bullet	\bullet			
34904A 4x8 Matrix	\bullet	\bullet			
34905A Dual 4-Channel RF Mux (50 $)^{[2]}$	\bullet				
34906A Dual 4-Channel RF Mux (75 $)^{[2]}$	\bullet				
34907A Multifunction Module (DIO)			\bullet	\bullet	\bullet
34907A Multifunction Module (Totalizer)			\bullet		\bullet
34907A Multifunction Module (DAC)				\bullet	

[1] Only onechannel can beclosed at a time on this module.
[2] Only one channed in each bank can beclosed at a time on this module

If the Instrument Does Not Turn On

Use the following steps to help solve problems you might encounter when turning on the instrument.

1 Verify that there is ac power to the instrument.

First, verify that the power cord is firmly plugged into the power receptacle on the rear panel of the instrument. You should also make sure that the power source you plugged the instrument into is energized. Then, verify that the instrument is turned on.

TheOn/ Standby switch () is located on the lower left side of thefront pand.

2 Verify the power-line voltage setting.

The line voltage is set to the proper value for your country when the instrument is shipped from the factory. Change the voltage setting if it is not correct. The settings are: 100, 120, 220, or 240 Vac .

Note: For 127 Vac operation, use the 120 Vac setting.
For 230 Vac operation, use the 220 Vac setting.
Se the next page if you need to change the linevoltage setting.

3 Verify that the power-line fuse is good.

The instrument is shipped from the factory with a 500 mA fuse installed.
This is the correct fuse for all line voltages.
Sethe next page if you need to replace the power-linefuse.

To replacethe $500 \mathrm{mAT}, 250 \mathrm{~V}$ fuse order Agilent part number 2110-0458.

Chapter 2 Quick Start If the Instrument Does Not Turn On

1 Remove the power cord. Remove the fuse-holder assembly from the rear panel.

3 Rotate the line-voltage selector until the correct voltage appears in the window.

2 Remove the line-voltage selector from the assembly.

Fuse: 500 mAT (for all line voltages)
Agilent Part Number: 2110-0458

4 Replace the fuse-holder assembly in the rear panel.

Verify that the correct line voltage is selected and the power-line fuse is good.

Chapter 2 Quick Start

To Adjust the Carrying Handle

To Adjust the Carrying Handle

To adjust the position, grasp the handle by the sides and pull outward. Then, rotate the handle to the desired position.

Benchtop Viewing Positions

Carrying Position

To Rack Mount the Instrument

You can mount the instrument in a standard 19-inch rack cabinet using one of three optional kits available. Instructions and mounting hardware are included with each rack-mounting kit. Any System II instrument of the same size can be rack-mounted beside the 34970A.

Remove the carrying handle, and thefront and rear rubber bumpers, before rack-mounting the instrument.

To remove the handle, rotate it to the vertical position and pull the ends outward.

To remove the rubber bumper, stretch a corner and then slide it off.

To rack mount a single instrument, order adapter kit 5063-9240.

To rack mount two instruments side-by-side, order lock-link kit 5061-9694 and flange kit 5063-9212. Be sure to use the support rails inside the rack cabinet.

To install one or two instruments in a sliding support shelf, order shelf 5063-9255, and slide kit 1494-0015 (for a single instrument, also order filler panel 5002-3999).

Front-Panel
 Overview

Front-Panel Overview

This chapter introduces you to the front-panel keys and menu operation. This chapter does not give a detailed description of every front-panel key or menu operation. It does, however, give you a good overview of the front-panel menu and many front-panel operations. See the Agilent 34970A User's Guidefor a complete discussion of the instrument's capabilities and operation.

This chapter is divided into the following sections:

- Front-Panel Menu Reference, on page 49
- ToUnsecure for Calibration, on page 51
- To Secure Against Calibration, on page51
- To Change the Security Code, on page 52
- Error Messages, on page52
- To Perform a Zero Adjustment, on page53
- ToApply Mx+B Scaling to Measurements, on page54
- To Read the Relay Cycle Count, on page 55
- To Read a Digital Input Port, on page 56
- To Write to a Digital Output Port, on page 57
- To Read the Totalizer Count, on page 58
- To Output a DC Voltage, on page 59

Front-Panel Menu Reference

This section gives an overview of the front-panel menus. The menus are designed to automatically guide you through all parameters required to configure a particular function or operation. The remainder of this chapter shows examples of using the front-panel menus.

Configure the measurement parameters on the displayed channel.

- Select measurement function (dc volts, ohms, etc.) on the displayed channel.
- Select transducer type for temperature measurements.
- Select units (${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$, or K) for temperature measurements.
- Select measurement range or autorange.
- Select measurement resolution.
- Copy and paste measurement configuration to other channels.

Configure the scaling parameters for the displayed channel.

- Set the gain ("M") and offset ("B") value for the displayed channel.
- Make a null measurement and store it as the offset value.
- Specify a custom label (RPM, PSI, etc.) for the displayed channel.

Alorm Configure alarms on the displayed channel.

- Select one of four alarms to report alarm conditions on the displayed channel.
- Configure a high limit, low limit, or both for the displayed channel.
- Configure a bit pattern which will generate an alarm (for digital input channels).

Configure the four Alarm Output hardware lines.

- Clear the state of the four alarm output lines.
- Select the "Latch" or "Track" mode for the four alarm output lines.
- Select the slope (rising or falling edge) for the four alarm output lines.

Inteval Configure the event or action that controls the scan interval.

- Select the scan interval mode (interval, manual, external, or alarm).
- Select the scan count.

Configure the advanced measurement features on displayed channel.

- Set the integration time for measurements on the displayed channel.
- Set the channel-to-channel delay for scanning.
- Enable/disable the thermocouple check feature (T/C measurements only).
- Select the reference junction source (T/C measurements only).
- Set the low frequency limit (ac measurements only).
- Enable/disable offset compensation (resistance measurements only).
- Select the binary or decimal mode for digital operations (34907A only).
- Configure the totalizer reset mode (totalizer only).
- Select which edge is detected (rising or falling) for totalizer operations.

Utility Configure system-related instrument parameters.

- Set the real-time system clock and calendar.
- Query the firmware revisions for the mainframe and installed modules.
- Select the instrument's power-on configuration (last or factory reset).
- Enable/disable the internal DMM.
- Secure/unsecure the instrument for calibration.

View readings, alarms, and errors.

- View the last 100 scanned readings from memory (last, min, max, and average).
- View the first 20 alarms in the alarm queue (reading and time alarm occurred).
- View up to 10 errors in the error queue.
- Read the number of cycles for the displayed relay (relay maintenance feature).

Sto/Rcl Store and recall instrument states.

- Store up to five instrument states in non-volatile memory.
- Assign a name to each storage location.
- Recall stored states, power-down state, factory reset state, or preset state.

Interface
 Configure the remote interface.

- Select the GPIB address.
- Configure the RS-232 interface (baud rate, parity, and flow control).

To Unsecure for Calibration

Y ou can unsecure the instrument either from the front panel or over the remote interface. The instrument is secured when shipped from the factory and the security code is set to "HP034970".

- Once you enter a security code, that code must be used for both front-panel and remote operation. F or example if you secure the instrument from the front panel, you must use that same code to unsecure it from the remote interface.
- Press Uility to enter the Utility menu.

When you first enter the Utility menu, the calibration entries toggle between CAL SECURED and UNSECURE CAL. To unsecure the instrument, select UNSECURE CAL and press Uulify. After entering the correct security code, press utility again. When you return to the menu, you will see new choices CAL UNSECURED and SECURE CAL.

Note: If you enter the wrong secure code, NO MATCH is displayed and a new choice, EXIT, is shown.

To Secure Against Calibration

Y ou can secure the instrument either from the front panel or over the remote interface. The instrument is secured when shipped from the factory and the security code is set to "HP034970".

- Once you enter a security code, that code must be used for both front-panel and remote operation. For example if you secure the instrument from the front panel, you must use that same code to unsecure it from the remote interface.
- Press Unility to enter the Utility menu.

When you enter the Utility menu, the calibration entries toggle between CAL UNSECURED and SECURE CAL. To secure the instrument, select SECURE CAL and press unility. After entering the desired security code, press unility again. When you return to the menu, you will see new choices CAL SECURED and UNSECURE CAL.

To Change the Security Code

- To change the security code, you must first unsecure the instrument, and then enter a new code. Make sure you have read the security code rules described on page 67 before attempting to change the security code.
- To change the security code, first make sure that the instrument is unsecured. Go to the SECURE CAL entry, enter the new security code, and press unility (the instrument is now secured with the new code). Changing the code from the front panel also changes the code as seen from the remote interface.

Error Messages

Error messages are retrieved in a first-in first-out (FIFO) order.
When the ERROR annunciator is on, press viem to view error messages. Use the arrow keys to scroll the message in the display.

A list of the self-test errors messages and their meanings begin on page 168.

For a complete list of error messages and descriptions, see chapter 6 in the 34970A User's Guide.

To Perform a Zero Adjustment

The instrument features closed case electronic calibration. No internal mechanical adjustments are required. The instrument calculates correction factors based upon an input reference value and stores the correction factors in non-volatile memory. This procedure demonstrates making the zero adjustment from the front panel. The gain adjustments are similar.

DO NOT perform this procedure before reading Chapter 4. Chapter 4 describes this procedure, the required input connections, input signals, and test considerations required for a valid adjustment.

1 Configure the channel.

You must configure a channel before applying performing the adjustment procedure. Configure the channel to DC VOLTS and 61/2 digits.

2 Apply the input signal

In this example, the input signal is a copper short (se page 66).

3 Setup the calibration.

The display will show PERFORM CAL..

4 Set the adjustment value.

The display will show the a number. Edit the number to the actual input value. F or the Zero Adjustment, the input value is 0.000000 .

$$
+000.000,000 \mathrm{mVDC}
$$

5 Begin the adjustment.

The display will show the progress of the adjustment. When all the adjustments are completed, the display will show done.

> DONE

To Apply Mx+B Scaling to Measurements

The scaling function allows you to apply a gain and offset to all readings on a specified multiplexer channel during a scan. In addition to setting the gain ("M") and offset ("B") values, you can also specify a custom measurement label for your scaled readings (RPM, PSI, etc.).

1 Configure the channel.

You must configure the channel (function, transducer type, etc.) before applying any scaling values. If you change the measurement configuration, scaling is turned off on that channel and the gain and offset values are reset ($M=1$ and $B=0$).

2 Set the gain and offset values.

The scaling values are stored in non-vol atile memory for the specified channels. A Factory Reset turns off scaling and clears the scaling values on all channels. An Instrument Preset or Card Reset does not clear the scaling values and does not turn off scaling.

$$
+1.000,000
$$

$$
-0.700,000 \mathrm{OHM}
$$

Set Gain

Set Offset

4 Scaling is now applied to the measurements.

To Read the Relay Cycle Count

The instrument has a Relay Maintenance System to help you predict relay end-of-life. The instrument counts the cycles on each relay in the instrument and stores the total count in non-volatile memory on each switch module. Y ou can use this feature on any of the relay modules and the internal DMM.

- In addition to the channel relays, you can also query the count on backplane relays and bank relays. N ote that you cannot control the state of these relays from the front panel but you can query the count.
- You can also query the state of the three relays on the internal DMM. These relays are numbered " 1 ", " 2 ", and " 3 " (which correspond to relays K102, K103, and K 104 respectively). These relays open or close when a function or range is changed on a module.
- The 34908A multiplexer contains 40 channels which are switched (HI only) using only 20 relays. Each relay is used to switch HI on two different channels (and only one channel can be closed at a time). The channels are arranged such that channels 01 and 21 use different contacts on the same relay. The remaining channels are also paired in the same manner (channels 02 and 22 , channels 03 and 23, etc.). Therefore, when you query the relay count on a channel, the number reflects the number of times that the relay was closed. F or example, the relay count will always be the same on channels 01 and 21.
- For more information on relay life and load considerations, refer to "Relay Life and Preventative Maintenance" in the 34970A User's Guide
- To read the count on the active channel, choose the following item and then turn the knob. To read the count on the internal DMM relays, turn the knob counterclockwise beyond the lowest numbered channel in the instrument. To read the "hidden" relays, turn the knob clockwise beyond the highest numbered channel in the current slot.

To Read a Digital Input Port

The multifunction module (34907A) has two non-isolated 8-bit input/output ports which you can use for reading digital patterns. You can read the live status of the bits on the port or you can configure a scan to include a digital read.

1 Select the Digital Input port.

Select the slot containing the multifunction module and continue turning the knob until DIN is displayed (channel 01 or 02).

2 Read the specified port.

You can specify whether you want to use binary or decimal format. Once you have selected the number base, it is used for all input or output operations on the same port. To change the number base, press the key and select USE BINARY or USE DECIMAL.

Binary Display Shown

The bit pattern read from the port will be displayed until you press another key, turn the knob, or until the display times out.

Note: To add a digital input channel to a scan list, press and select the DIO READ choice.

To Write to a Digital Output Port

The multifunction module (34907A) has two non-isol ated 8-bit input/output ports which you can use for outputting digital patterns.

1 Select the Digital Output port.

Select the slot containing the multifunction module and continue turning the knob until DIN is displayed (channel 01 or 02).

2 E nter the bit pattern editor.

Notice that the port is now converted to an output port (DOUT).

Binary Display Shown

3 E dit the bit pattern.

Use the knob and \square or \square keys to edit the individual bit values. Y ou can specify whether you want to use binary or decimal format. Once you have selected the number base, it is used for all input or output operations on the same port. To change the number base, press the key and select USE BINARY or USE DECIMAL.

```
240 DOUT
```

Decimal Display Shown

4 Output the bit pattern to the specified port.
The specified bit pattern is latched on the specified port. To cancel an output operation in progress, wait for the display to time out.

To Read the Totalizer Count

The multifunction module (34907A) has a 26 -bit totalizer which can count TTL pulses at a 100 kHz rate. Y ou can manually read the totalizer count or you can configure a scan to read the count.

1 Select the totalizer channel.

Select the slot containing the multifunction module and continue turning the knob until TOTALIZE (channel 03) is displayed.

2 Configure the totalize mode.

The internal count starts as soon as you turn on the instrument.
You can configure the totalizer to reset the count to " 0 " after being read or it can count continuously and be manually reset.

```
READ + RESET
```


3 Read the count.

The count is read once each time you press Read ; the count does not update automatically on the display. As configured in this example, the count is automatically reset to " 0 " each time you read it.

```
12345 TOT
```

The count will be displayed until you press another key, turn the knob, or until the display times out. To manually reset the totalizer count,

Note: To add a totalizer channel to a scan list, press neosure and select the TOT READ choice

To Output a DC Voltage

The multifunction module (34907A) has two analog outputs capable of outputting calibrated voltages between ± 12 volts.

2 E nter the output voltage editor.

> +00.000 V DAC

3 Set the desired output voltage.

Use the knob and \square or \square keys to edit the individual digits.

```
+05.250 V DAC
```


4 Output the voltage from the selected DAC.

The output voltage will be displayed until you press another key or turn the knob. To manually reset the output voltage to 0 volts, press $\underset{\substack{\text { Corest } \\ \text { Cest }}}{ }$

Calibration Procedures

This chapter contains procedures for verification of the instrument's performance and adjustment (calibration). These procedures are required only if the internal DMM is installed. The chapter is divided into the following sections:

- Agilent Technologies Calibration Services, on page63
- Calibration Interval, on page 63
- Time Required for Calibration, on page 64
- Automating Calibration Procedures, on page 64
- Recommended Test Equipment, on page 65
- Input connections, on page 66
- Calibration Security, on page67
- Calibration Message, on page69
- Calibration Count, on page 69
- Calibration Procedures, on page 70
- Aborting a Calibration in Progress, on page 70
- Test Considerations, on page 71
- Performance Verification Tests, on page 72
- Internal DMM Verification Tests, on page 75
- Optional AC Performance Verification Tests, on page 80
- Internal DMM Adjustments, on page 81
- - 10 Vdc Adjustment Procedure (Optional), on page 85
- Plug-in Module Test Considerations, on page 87
- Relay Verification, on page 88
- Thermocouple ReferenceJ unction (Optional), on page 112
- 34907A Analog Output, on page 114

Closed-Case Electronic Calibration The instrument features closed-case electronic calibration. No internal mechanical adjustments are required. The instrument calculates correction factors based upon the input reference value you set. The new correction factors are stored in non-vol atile memory until the next calibration adjustment is performed. Non-volatile EEPROM calibration memory does not change when power has been off or after a remote interface reset.

Agilent Technologies Calibration Services

When your instrument is due for calibration, contact your local Agilent Service Center for a low-cost recalibration. The 34970A is supported on automated calibration systems which allow Agilent to provide this service at competitive prices.

Calibration I nterval

The instrument should be calibrated on a regular interval determined by the measurement accuracy requirements of your application. A 1-year interval is adequate for most applications. Accuracy specifications are warranted only if adjustment is made at regular calibration intervals. Accuracy specifications are not warranted beyond the 1-year calibration interval. Agilent does not recommend extending calibration intervals beyond 2 years for any application.

Adjustment is Recommended

Whatever calibration interval you select, Agilent recommends that complete readjustment should al ways be performed at the calibration interval. This will assure that the 34970A will remain within specification for the next calibration interval. This criteria for re-adjustment provides the best long-term stability. Performance data measured using this method can be used to extend future calibration intervals.

Use the Calibration Count feature (seepage69) to verify that all adjustments have been performed.

Time Required for Calibration

The 34970A can be automatically calibrated under computer control. With computer control you can perform the complete calibration procedure and performance verification tests in less than 30 minutes once the instrument is warmed-up (see"Test Considerations" on page71). Manual calibrations using the recommended test equipment will take approximately 2 hours.

Automating Calibration Procedures

Y ou can automate the complete verification and adjustment procedures outlined in this chapter if you have access to programmable test equipment. You can program the instrument configurations specified for each test over the remote interface. Y ou can then enter readback verification data into a test program and compare the results to the appropriate test limit values.

You can also adjust the instrument from the remote interface. Remote adjustment is similar to the local front-panel procedure. You can use a computer to perform the adjustment by first selecting the required function and range. The calibration value is sent to the instrument and then the calibration is initiated over the remote interface. The instrument must be unsecured prior to initiating the calibration procedure.

F or further information on programming the instrument, see chapter 5 in the 34970A User's Guide.

Chapter 4 Calibration Procedures Recommended Test Equipment

Recommended Test Equipment

The test equipment recommended for the performance verification and adjustment procedures is listed below. If the exact instrument is not available, substitute calibration standards of equivalent accuracy.

A suggested alternate method would be to use the Agilent 3458A 81/2digit Digital Multimeter to measure less accurate yet stable sources. The output value measured from the source can be entered into the instrument as the target calibration value.

Application	Recommended Equipment	Accuracy Requirements
Zero Calibration ${ }^{[1]}$ DC Voltage ${ }^{[1]}$ DC Current ${ }^{[1]}$ Resistance ${ }^{[1]}$ AC Voltage ${ }^{[1]}$ AC Current ${ }^{[1]}$ Frequency ${ }^{[1]}$	None Fluke 5700A Fluke 5700A/ 5725A Fluke 5700A Fluke 5700A/ 5725A Fluke 5700A/ 5725A Agilent 33220A	4 -terminal all copper short $<1 / 5$ instrument 24 hour spec
Analog Output 34907A	Agilent 34401A	$<1 / 5$ instrument 24 hour spec
Thermocouple Reference Junction 34901A 34902A 34908A	Thermistor YSI 44031 (two) ${ }^{[2]}$ J Type Calibrated Thermocouple Triple Point Cell	$\pm 0.1{ }^{\circ} \mathrm{C}$
Relay contact resistance All switch modules	Agilent 34401A	$\pm 0.001 \Omega$ resolution

[1] In addition to the internal DMM, these applications require an input multiplexer module.
The 34901A is recommended.
[2] Thermistor YSI 44031 is available as Agilent part number 34308A (package of five).

Chapter 4 Calibration Procedures Input Connections

Input Connections

You will need an input multiplexer module to verify or adjust the internal DMM. Input connections can be made using a 34901A 20-Channel Multiplexer.

To use a 34901A to completely verify and adjust the internal DMM, make the following connections:

Note: Useshid ded twisted pair Teflon ${ }^{\circledR}$ insulated cables to reducesettling and noiseerrors. Connect theshidd to thesourceLO output.

Y ou can also use a 34902A for test and adjustment of voltage, frequency, and resistance functions. Y ou cannot test or adjust current inputs with a 34902A. If you use a 34902A; connect the copper shorts to Channels 7 and 15 and make the input connections to Channels 8 and 16.

Teflon ${ }^{\circledR}$ is a registered trademark of E.I. du Pont de Nemours and Company.

Chapter 4 Calibration Procedures Calibration Security

Calibration Security

This feature allows you to enter a security code to prevent accidental or unauthorized adjustments of the instrument. When you first receive your instrument, it is secured. Before you can adjust the instrument, you must unsecure it by entering the correct security code. Sepage 51 in Chapter 3 for a procedureto enter the security code

- The security code is set to "HP034970" when the instrument is shipped from the factory. The security code is stored in non-volatilememory, and does not change when power has been off, after a F actory Reset (*RST command), or after an Instrument Preset (SYSTem:PRESet command).
- The security code may contain up to 12 alphanumeric characters. The first character must be a letter, but the remaining characters can be letters, numbers, or an underscore (_). You do not have to use all 12 characters but the first character must always be a letter.

Note: If you forget your security code, you can disable the security feature by adding a jumper insidetheinstrument as described on the following page

Chapter 4 Calibration Procedures Calibration Security

To Unsecure the Instrument Without the Security Code

To unsecure the instrument without the correct security code, follow the steps below. A front panel procedure to unsecure the instrument is given on page 51. Se "Electrostatic Discharge (ESD) Precautions" on page 162 before beginning this procedure.

Warning
 SHOCK HAZARD. Only service-trained personnel who are aware of the hazards invol ved should remove the instrument covers. The procedures in this section require that you connect the power cord to the instrument with the covers removed. To avoid electrical shock and personal injury, be careful not to touch the power-line connections.

Warning

- Exposed Mains
- Do Not Touch!

1 Disconnect the power cord and all input connections.
2 Remove the instrument cover (see page 174). Turn the instrument over.
3 Apply power and turn on the instrument. Be careful not to touch the power line connections.

4 Apply a short between the two exposed metal pads marked CAL UNLOCK as shown in the figure below.

5 While maintaining the short, enter any unsecure code. The instrument is now unsecured.

6 Remove the short.
7 Turn off the instrument and remove the power cord. Reassemble the instrument.

Now you can enter a new security code. Be sure to remember the new security code.

Calibration Message

The instrument allows you to store one message in calibration memory. F or example, you can store such information as the date when the last calibration was performed, the date when the next calibration is due, the instrument's serial number, or even the name and phone number of the person to contact for a new calibration.

- You can record a calibration message only from the remote interface and only when the instrument is unsecured. Y ou can read the message from either the front-panel or over the remote interface. Y ou can read the calibration message whether the instrument is secured or unsecured.
- The calibration message may contain up to 40 characters. From the front panel, you can view 13 characters of the message at a time. Press D to scroll through the text of the message. Press D again to increase the scrolling speed.

Calibration Count

Y ou can query the instrument to determine how many calibrations have been performed. Note that your instrument was calibrated before it left the factory. When you receive your instrument, be sure to read the count to determine its initial value.

- The calibration count increments up to a maximum of 65,535 after which it rolls over to " 0 ". Since the value increments by one for each calibration point, a complete calibration may increase the value by many counts.
- The calibration count is also incremented with calibrations of the DAC channels on the multifunction module.
- Front-Pane Operation:

- RemoteInterface Operation:

CALibration: COUNt?

Chapter 4 Calibration Procedures
Calibration Procedure

Calibration Procedure

The following procedure is the recommended method to complete an instrument calibration.

1 Read "Test Considerations" (page 71).
2 Unsecure the instrument for calibration (page51).
3 Perform the verification tests to characterize the instrument (incoming data).
4 Perform the zero adjustment procedures.
5 Perform the gain adjustment procedures. Perform the verification tests to verify the adjustments (outgoing data).

6 Secure the instrument against calibration.
7 Note the new security code and calibration count in the instrument's maintenance records.

Aborting a Calibration in Progress

Sometimes it may be necessary to abort a calibration after the procedure has already been initiated. You can abort a calibration at any time by turning off the power. When performing a calibration from the remote interface, you can abort a calibration by issuing a remote interface device clear message.
$\overline{C A U T I O N}$ If you abort a calibration in progress when theinstrument is attempting to writenew calibration constants to EEPROM, you may lose all calibration constants for the function. Typically, upon re-applying power, the instrument will report error 705 Cal:Aborted. You may al so generate errors 740 through 746 . If this occurs, you should not use theinstrument until a completereadjustment has been performed.

Test Considerations

To ensure proper instrument operation, verify that you have selected the correct power line voltage prior to attempting any procedure in this chapter. Se"If the Instrument Does Not Turn On", on page 42.

Errors may be induced by ac signals present on the input leads during a self-test. Long test leads can also act as an antenna causing pick-up of ac signals.

F or optimum performance, all procedures should comply with the following recommendations:

- Assure that the calibration ambient temperature is stable and between $18{ }^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$. Ideally the calibration should be performed at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.
- Assure ambient relative humidity is less than 80%.
- Allow a 2-hour warm-up period with a copper short connected and the multiplexer module installed before verification or adjustment. The connections are shown in the figure on page 66.
- Use shielded twisted pair Teflon ${ }^{\circledR}$ insulated cables to reduce settling and noise errors. Keep the input cables as short as possible.
- Connect the input cable shield to the source LO output. Except where noted in the procedures, connect the calibrator LO source to earth ground.
Two-wire Ohms measurements are affected by the entire path length, including the plug-in card trace length and slot trace lengths. On the 34901A, Channel 10 is recommended as the median path length (on the 34902A, use Channel 8) for 2-wire Ohms verification and adjustments. Install the input multiplexer in slot 200.

Because the instrument is capable of making highly accurate measurements, you must take special care to ensure that the calibration standards and test procedures used do not introduce additional errors. I deally, the standards used to verify and adjust the instrument should be an order of magnitude more accurate than each instrument range full scale error specification.

F or the dc voltage, dc current, and resistance gain verification measurements, you should take care to ensure the calibrator's " 0 " output is correct. If necessary, the measurements can be referenced to the calibrator's "0" output using Mx + B scaling (sepage54). You will need to set the offset for each range of the measuring function being verified.

Chapter 4 Calibration Procedures Performance Verification Tests

Performance Verification Tests

Use the Performance verification Tests to verify the measurement performance of the instrument. The performance verification tests use the instrument's spedifications listed in chapter 1, "Spedifications," starting on page 15.

You can perform four different levels of performance verification tests:

- Self-Test A series of internal verification tests that give a high confidence that the instrument is operational.
- Quick Verification A combination of the internal self-tests and selected verification tests.
- Performance Verification Tests An extensive set of tests that are recommended as an acceptance test when you first receive the instrument or after performing adjustments.
- Optional Verification Tests Tests not performed with every calibration. Perform these tests to verify additional specifications or functions of the instrument.

Chapter 4 Calibration Procedures

Self-Test

A brief power-on self-test occurs automatically whenever you turn on the instrument. This limited test assures that the instrument is capable of operation and also checks the plug-in cards for basic operation.

To perform a complete self-test hold down the shifi key as you press the power switch to turn on the instrument; hold down the snifi key for more than 5 seconds until the instrument beeps (a complete description of these tests can be found in chapter 6). The instrument will automatically perform the complete self-test procedure when you release the key. The self-test will complete in approximately 20 seconds.

- If the self-test is successful, "PASS" is displayed on the front panel.
- If the self-test fails, "FAIL" is displayed and the ERROR annunciator turns on. If repair is required, see chapter 6, "Service," for further details.
- If all tests pass, you have a high confidence ($\sim 90 \%$) that the instrument is operational.

Chapter 4 Calibration Procedures
Performance Verification Tests

Quick Performance Check

The quick performance check is a combination of internal self-test and an abbreviated performance test (specified by the letter \mathbf{Q} in the performance verification tests). This test provides a simple method to achieve high confidence in the instrument's ability to functionally operate and meet specifications. These tests represent the absolute minimum set of performance checks recommended following any service activity. Auditing the instrument's performance for the quick check points (designated by a Q) verifies performance for "normal" accuracy drift mechanisms. This test does not check for abnormal component failures.

To perform the quick performance check, do the following:

- Perform a complete self-test. A procedure is given on page 73.
- Perform only the performance verification tests indicated with the letter \mathbf{Q}.
If the instrument fails the quick performance check, adjustment or repair is required.

Performance Verification Tests

The performance verification tests are recommended as acceptance tests when you first receive the instrument. The acceptance test results should be compared against the 90 day test limits. You should use the 24-hour test limits only for verification within 24 hours after performing the adjustment procedure. After acceptance, you should repeat the performance verification tests at every calibration interval.

If the instrument fails performance verification, adjustment or repair is required.

Adjustment is recommended at every calibration interval. If adjustment is not made, you must guard band, using no more than 80% of the spedifications listed in Chapter 1, as the verification limits.

Internal DMM Verification Tests

These procedures use inputs connected to a 34901A 20-Channel Multiplexer (sepage66) installed in slot 200.

Zero Offset Verification

This procedure is used to check the zero offset performance of the internal DMM. Verification checks are only performed for those functions and ranges with unique offset calibration constants. M easurements are checked for each function and range as described in the procedure below.

Zero Offset Verification Procedure

1 Make sure you have read "Test Considerations" on page 71.
2 This procedure will measure the shorts installed on Channels 209 and 219. Leave the Amps input connections (Channel 221) open.

Continued on next page..

Chapter 4 Calibration Procedures Internal DMM Verification Tests

Continued from previous page...

1 Select each function and range in the order shown in the table below. Before executing each test, you must press non to enable reading monitoring on the selected channel (or use the ROUTe: MON command from the remote interface). Compare measurement results to the appropriate test limits shown in the table (se page 74).

Input	Channel 221 Function ${ }^{[1]}$ Range		Quick Check	Error from Nominal			
			24 hour	90 day	1 year		
Open Open Open	DC Current	10 mA 100 mA 1 A		Q	$\begin{aligned} & \pm 1 \mu \mathrm{~A} \\ & \pm 4 \mu \mathrm{~A} \\ & \pm 60 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 2 \mu \mathrm{~A} \\ & \pm 5 \mu \mathrm{~A} \\ & \pm 100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2 \mu \mathrm{~A} \\ & \pm 5 \mu \mathrm{~A} \\ & \pm 100 \mu \mathrm{~A} \end{aligned}$
Input	Channe Function ${ }^{[1]}$	$209 \text { Range }$	Quick Check	$\begin{aligned} & \text { Error } \\ & 24 \text { hour } \end{aligned}$	from Nom 90 day	minal 1 year	
Short Short Short Short Short	DC Volts	$\begin{aligned} & 100 \mathrm{mV} \\ & 1 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 100 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	Q	$\begin{array}{\|l\|} \hline \pm 3.5 \mu \mathrm{~V} \\ \pm 6 \mu \mathrm{~V} \\ \pm 40 \mu \mathrm{~V} \\ \pm 600 \mu \mathrm{~V} \\ \pm 6 \mathrm{mV} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \pm 4 \mu \mathrm{~V} \\ \pm 7 \mu \mathrm{~V} \\ \pm 50 \mu \mathrm{~V} \\ \pm 600 \mu \mathrm{~V} \\ \pm 9 \mathrm{mV} \end{array}$	$\begin{aligned} & \pm 4 \mu \mathrm{~V} \\ & \pm 7 \mu \mathrm{~V} \\ & \pm 50 \mu \mathrm{~V} \\ & \pm 600 \mu \mathrm{~V} \\ & \pm 9 \mathrm{mV} \end{aligned}$	
Short Short Short Short Short Short Short	2-Wire Ohms ${ }^{[2]}$ and 4-Wire Ohms	100Ω $1 \mathrm{k} \Omega$ $10 \mathrm{k} \Omega$ $100 \mathrm{k} \Omega$ $1 \mathrm{M} \Omega$ $10 \mathrm{M} \Omega$ $100 \mathrm{M} \Omega$	Q	$\pm 6 \mathrm{~m}$ $\pm 6 \mathrm{~m} \Omega$ $\pm 6 \mathrm{~m} \Omega$ $\pm 50 \mathrm{~m} \Omega$ $\pm 500 \mathrm{~m} \Omega$ $\pm 10 \Omega$ $\pm 100 \Omega$ $\pm 10 \mathrm{k} \Omega$	$\pm 4 \mathrm{~m} \Omega$ $\pm 10 \mathrm{~m} \Omega$ $\pm 100 \mathrm{~m} \Omega$ $\pm 1 \Omega$ $\pm 10 \Omega$ $\pm 100 \Omega$ $\pm 10 \mathrm{k} \Omega$	$\begin{aligned} & \pm 4 \mathrm{~m} \Omega \\ & \pm 10 \mathrm{~m} \Omega \\ & \pm 100 \mathrm{~m} \Omega \\ & \pm 1 \Omega \\ & \pm 10 \Omega \\ & \pm 100 \Omega \\ & \pm 10 \mathrm{k} \Omega \end{aligned}$	

[1] Select 6½ digit resolution.
[2] For 2-wire ohms, an additional 4Ω of error must be added.
Q: Quick performance verification test points.
Note: Zero offset calibration using a multifunction calibrator is NOT recommended. The calibrator and cabling offset can belarge and unstable causing poor offset calibration of the internal DMM.

Chapter 4 Calibration Procedures
Internal DMM Verification Tests

Gain Verification

This procedure is used to check the "full scale" reading accuracy of the internal DMM. Verification checks are performed only for those functions and ranges with unique gain calibration constants. Begin verification by selecting a measuring function and range. Make sure you have read "Test Considerations" on page 71.

DC VOLTS, Resistance, and DC CURRENT Gain Verification Test

1 Make sure you have read "Test Considerations" on page 71.
2 Select each function and range in the order shown below. Before executing each test, you must press mon to enable reading monitoring on the selected channel (or use the ROUTe : MON command from the remote interface).
3 Compare measurement results to the appropriate test limits shown in the table. (Be certain to allow for appropriate source settling.)

Input	Channel 210		Quick Check	Error from Nominal		
	on ${ }^{11}$	Range		24 h	90 day	1 year
$\begin{aligned} & 100 \mathrm{mV} \\ & 1 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 100 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	DC Volts	$\begin{aligned} & 100 \mathrm{mV} \\ & 1 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 100 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathbf{Q} \\ & \mathbf{Q} \end{aligned}$	$\begin{aligned} & \pm 6.5 \mu \mathrm{~V} \\ & \pm 26 \mu \mathrm{~V} \\ & \pm 190 \mu \mathrm{~V} \\ & \pm 2.6 \mathrm{mV} \\ & \pm 12 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \pm 8 \mu \mathrm{~V} \\ & \pm 37 \mu \mathrm{~V} \\ & \pm 250 \mathrm{~V} \\ & \pm 4.1 \mathrm{mV} \\ & \pm \\ & 19.5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \pm 9 \mu \mathrm{~V} \\ & \pm 47 \mu \mathrm{~V} \\ & \pm 400 \mu \mathrm{~V} \\ & \pm 5.1 \mathrm{mV} \\ & \pm 22.5 \mathrm{mV} \end{aligned}$
$\begin{aligned} & \hline 100 \Omega \\ & 1 \mathrm{k} \Omega \\ & 10 \mathrm{k} \Omega \\ & 100 \mathrm{k} \Omega \\ & 1 \mathrm{M} \Omega \\ & 10 \mathrm{M} \Omega \\ & 100 \mathrm{M} \Omega{ }^{[3]} \\ & \hline \end{aligned}$	2-Wire Ohms ${ }^{[2]}$ and 4-Wire Ohms	100Ω $1 \mathrm{k} \Omega$ $10 \mathrm{k} \Omega$ $100 \mathrm{k} \Omega$ $1 \mathrm{M} \Omega$ $10 \mathrm{M} \Omega$ $100 \mathrm{M} \Omega$	Q Q	$\begin{aligned} & \pm 6.5 \mathrm{~m} \Omega \\ & \pm 26 \mathrm{~m} \Omega \\ & \pm 250 \mathrm{~m} \Omega \\ & \pm 2.5 \Omega \\ & \pm 30 \Omega \\ & \pm 1.6 \mathrm{k} \Omega \\ & \pm 310 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \mathrm{~m} \Omega \\ & \pm 90 \mathrm{~m} \Omega \\ & \pm 900 \mathrm{~m} \Omega \\ & \pm 9 \Omega \\ & \pm 90 \Omega \\ & \pm 2.1 \mathrm{k} \Omega \\ & \pm 801 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 14 \mathrm{~m} \Omega \\ & \pm 110 \mathrm{~m} \Omega \\ & \pm 1.1 \Omega \\ & \pm 11 \Omega \\ & \pm 110 \Omega \\ & \pm 4.1 \mathrm{k} \Omega \\ & \pm 810 \mathrm{k} \Omega \end{aligned}$
Input	Channel Function ${ }^{[1]}$	Range	Quick Check	$\begin{aligned} & \text { Err } \\ & 24 \text { hou } \end{aligned}$	$\begin{aligned} & \text { or from No } \\ & \text { ir } \quad 90 \text { day } \end{aligned}$	inal 1 year
10 mA 100 mA 1 A	DC Current	10 mA 100 mA 1 A	Q	$\begin{aligned} & \pm 1.5 \mu \mathrm{~A} \\ & \pm 14 \mu \mathrm{~A} \\ & \pm 560 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 5 \mu \mathrm{~A} \\ & \pm 35 \mu \mathrm{~A} \\ & \pm 900 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 7 \mu \mathrm{~A} \\ & \pm 55 \mu \mathrm{~A} \\ & \pm 1.1 \mathrm{~mA} \end{aligned}$

[1] Select $61 / 2$ digit resolution.
[2] The 2-wire ohms resistance verification test is optional (see note on Page 82). For 2-wire ohms, an additional 4Ω of error must be added. Add a 1 -second channel delay when using Fluke 5700 in 2-wire compensated mode. This avoids response time issues with 2-wire compensation when 34970A's current source contains a pulse.
[3] Verify only, no adjustment required.
Q: Quick performance verification test points.

Chapter 4 Calibration Procedures Internal DMM Verification Tests

AC VOLTS Gain Verification Test

Configuration: AC Volts
LF 3 HZ:SLOW (in the Advanced menu)
1 Make sure you have read "Test Considerations" on page 71.
2 Select Channel 210, set the AC VOLTS function and the 3 Hz input filter. With the slow filter selected, each measurement takes 7 seconds to complete. Before executing each test, you must press non to enable reading monitoring on the selected channel (or use the ROUTe: MON Command from the remote interface).
3 Select each range in the order shown below. Compare measurement results to the appropriate test limits shown in the table. (Be certain to allow for appropriate source settling.)

V rms	Input	Range	Quick Check	Error from Nominal		
	Frequency			24 hour	90 day	1 year
100 mV	1 kHz	100 mV		$\pm 70 \mu \mathrm{~V}$	$\pm 90 \mu \mathrm{~V}$	$\pm 100 \mu \mathrm{~V}$
100 mV	50 kHz		Q	$\pm 150 \mu \mathrm{~V}$	$\pm 160 \mu \mathrm{~V}$	$\pm 170 \mu \mathrm{~V}$
1 V	1 kHz	1		$\pm 700 \mu \mathrm{~V}$	$\pm 900 \mu \mathrm{~V}$	$\pm 1 \mathrm{mV}$
1 V	50 kHz			$\pm 1.5 \mathrm{mV}$	$\pm 1.6 \mathrm{mV}$	$\pm 1.7 \mathrm{mV}$
10 V	1 kHz	10 V		$\pm 7 \mathrm{mV}$	$\pm 9 \mathrm{mV}$	$\pm 10 \mathrm{mV}$
10 V	50 kHz		Q	$\pm 15 \mathrm{mV}$	$\pm 16 \mathrm{mV}$	$\pm 17 \mathrm{mV}$
10 V	10 Hz			$\pm 7 \mathrm{mV}$	$\pm 9 \mathrm{mV}$	$\pm 10 \mathrm{mV}$
$10 \mathrm{mv}{ }^{[1]}$	1 kHz	100 mV		$\pm 34 \mu \mathrm{~V}$	$\pm 45 \mu \mathrm{~V}$	$\pm 46 \mu \mathrm{~V}$
100 V	1 kHz	100 V	Q	$\pm 70 \mathrm{mV}$	$\pm 90 \mathrm{mV}$	$\pm 100 \mathrm{mV}$
100 V	50 kHz			$\pm 150 \mathrm{mV}$	$\pm 160 \mathrm{mV}$	$\pm 170 \mathrm{mV}$
300 V	1 kHz	300 V		$\pm 270 \mathrm{mV}$	$\pm 390 \mathrm{mV}$	$\pm 420 \mathrm{mV}$
$300 \mathrm{~V}^{[2]}$	50 kHz			$\pm 600 \mathrm{mV}$	$\pm 690 \mathrm{mV}$	$\pm 720 \mathrm{mV}$

[1] For this test, isolate the calibrator's output from earth ground.
[2] Some calibrators may have difficulty driving the internal DMM and cable load at this $\mathrm{V}-\mathrm{Hz}$ output. Use short, low capacitance cable to reduce calibration loading. Verification can be performed at >195 Vrms. New test limits can be computed from the accuracy specification shown in Chapter 1 for the actual test conditions used.
Q: Quick performance verification test points.

Note: The 50 kHz ac voltagetest points may fail performance verification if theinternal shied ds havebeen removed and reinstalled. Se "Gain Adjustment," on page82, for further information on how to recalibratetheac voltagefunction.

Chapter 4 Calibration Procedures
Internal DMM Verification Tests

AC CURRENT Gain Verification Test

Configuration: AC Current
LF 3 HZ:SLOW (in the Advanced menu)
1 Make sure you have read "Test Considerations" on page 71.
2 Select Channel 221, set the AC CURRENT function and the 3 Hz input filter. With the slow filter selected, each measurement takes 7 seconds to complete. Before executing each test, you must press uon to enable reading monitoring on the selected channel (or use the ROUTe: MON Command from the remote interface).

3 Select each range in the order shown below. Compare measurement results to the appropriate test limits shown in the table. (Be certain to allow for appropriate source settling.)

Input		Range	Quick Check	Error from Nominal		
Current	Frequency		90 day	1 year		
$10 \mathrm{~mA}{ }^{[1]}$	1 kHz			$\pm 14 \mu \mathrm{~A}$	$\pm 14 \mu \mathrm{~A}$	$\pm 14 \mu \mathrm{~A}$
$100 \mathrm{~mA}{ }^{[1]}$	1 kHz	100 mA	\mathbf{Q}	$\pm 600 \mu \mathrm{~A}$	$\pm 600 \mu \mathrm{~A}$	$\pm 600 \mu \mathrm{~A}$
10 mA	1 kHz	1 A		$\pm 1.41 \mathrm{~mA}$	$\pm 1.41 \mathrm{~mA}$	$\pm 1.41 \mathrm{~mA}$
$1 \mathrm{~A}^{[1]}$	1 kHz	1 A		$\pm 1.4 \mathrm{~mA}$	$\pm 1.4 \mathrm{~mA}$	$\pm 1.4 \mathrm{~mA}$

[1] Verify only, no adjustment.

Frequency Gain Verification Test

Configuration: Frequency
61/2 digits
1 Make sure you have read "Test Considerations" on page 71.
2 Select Channel 210, select the FREQUENCY function and set $61 / 2$ digits.
3 Select each range in the order shown below. Compare measurement results to the appropriate test limits shown in the table. (Be certain to allow for appropriate source settling.)

Input		Range	Quick Check	Error from Nominal		
Voltage	Frequency			24 hou	90 day	1 year
$10 \mathrm{mV}{ }^{\text {[1] }}$	100 Hz	100 mV		$\pm 0.06 \mathrm{~Hz}$	$\pm 0.1 \mathrm{~Hz}$	$\pm 0.1 \mathrm{~Hz}$
1 V	100 kHz	1 V	Q	$\pm 6 \mathrm{~Hz}$	$\pm 10 \mathrm{~Hz}$	$\pm 10 \mathrm{~Hz}$

[^2]Chapter 4 Calibration Procedures
Optional AC Performance Verification Tests

Optional AC Performance Verification Tests

These tests are not intended to be performed with every calibration. They are provided as an aid for verifying additional instrument specifications. There are no adjustments for these tests; they are provided for performance verification only.

Configuration: AC VOLTS
LF 3 HZ:SLOW (in the Advanced menu)
1 Make sure you have read "Test Considerations" on page 71.
2 Select Channel 210, select the AC Volts function and the 3 HZ filter. Before executing each test, you must press mon to enable reading monitoring on the selected channel (or use the ROUTe: MON command from the remote interface).
3 Select each range in the order shown below. Compare measurement results to the appropriate test limits shown in the table. (Be certain to allow for appropriate source settling.)

Input Voltage Frequency		Range	Error from Nominal			
		24 hour	90 day	1 year		
1 V	20 Hz		1 V	$\pm 700 \mu \mathrm{~V}$	$\pm 900 \mu \mathrm{~V}$	$\pm 1 \mathrm{mV}$
1 V	20 kHz	1 V	$\pm 700 \mu \mathrm{~V}$	$\pm 900 \mu \mathrm{~V}$	$\pm 1 \mathrm{mV}$	
1 V	100 kHz	1 V	$\pm 6.3 \mathrm{mV}$	$\pm 6.8 \mathrm{mV}$	$\pm 6.8 \mathrm{mV}$	
1 V	300 kHz	1 V	$\pm 45 \mathrm{mV}$	$\pm 45 \mathrm{mV}$	$\pm 45 \mathrm{mV}$	
10 V	1 kHz	10 V	$\pm 7 \mathrm{mV}$	$\pm 9 \mathrm{mV}$	$\pm 10 \mathrm{mV}$	
1 V	1 kHz	10 V	$\pm 3.4 \mathrm{mV}$	$\pm 4.5 \mathrm{mV}$	$\pm 4.6 \mathrm{mV}$	
100 mV	1 kHz	10 V	$\pm 13 \mathrm{mV}$	$\pm 14 \mathrm{mV}$	$\pm 14 \mathrm{mV}$	

Internal DMM Adjustments

You will need a 34901A 20-Channel Multiplexer to perform the following procedures (seepage66). Install the Multiplexer in slot 200.

Zero Adjustment

Each time you perform a zero adjustment, the Internal DMM stores a new set of offset correction constants for every measurement function and range. The Internal DMM will sequence through all required functions and ranges automatically and store new zero offset calibration constants. All offset corrections are determined automatically. Y ou may not correct a single rangeor function without reentering ALL zero offset correction constants automatically. This feature is intended to save calibration time and improve zero calibration consistency.

Note: Never turn off the Internal DMM during Zero Adjustment. This may cause ALL calibration memory to belost.

Zero Adjustment Procedure

The zero adjustment procedure takes about 5 minutes to complete. Be sure to allow the instrument to warm up for 2 hours before performing the adjustments.

F ollow the steps outlined below. Review "Test Considerations" on page 71 before beginning this test. Also see page 53, for an example of how to initiate a zero calibration.
1 This procedure will use the copper shorts installed on Channels 209 and 219. Leave the Amps input connections (Channel 221) open.
2 Select Channel 209. Select the DC VOLTS function.
3 Press shift view to enter the calibration menu. Press viem again to begin the adjustment procedure.
4 Use the knob and arrow keys to set the number in the display to 0.000000 and press viem.
5 Perform the Zero Offset Verification tests (see page 75) to check zero calibration results.

Chapter 4 Calibration Procedures
Internal DMM Adjustments

Gain Adjustment

The Internal DMM stores a single new gain correction constant each time this procedure is followed. The gain constant is computed from the calibration value entered for the calibration command and from measurements made automatically during the adjustment procedure.

Most measuring functions and ranges have gain adjustment procedures. Only the $100 \mathrm{M} \Omega$ range does not have gain calibration procedures. The gain calibration value may be entered through the front panel menu or over the remote interface. See page 53, for an example of how to enter calibration values.

Adjustments for each function should be performed ONLY in the order shown in the performance verification table. See "Performance Verification Tests" earlier in this chapter for the tables used for gain adjustments.

Gain Adjustment Considerations

- The zero adjustment procedure must have been recently performed prior to beginning any gain adjustment procedures.
- The optional - 10 Vdc adjustment should be performed only after servicing the Internal DMM 's a-to-d converter or after replacing network A4U101 or calibration RAM A4U505.
- When performing a 4-wire ohms gain adjustment, a new gain correction constant is al so stored for the corresponding 2-wire ohms measurement range. If desired, the 2-wire gain can be adjusted separately after the 4-wire ohms gain calibration is completed.
- During the ac voltage gain adjustments, some of the dc voltage gain constants are used. Perform the dc voltage gain calibration before the ac voltage gain calibration.

Note: Never turn off the instrument during a Gain Adjustment. This may cause calibration memory for the present function to belost.

Chapter 4 Calibration Procedures Internal DMM Adjustments

Valid Gain Adjustment Input Values

Gain adjustment can be accomplished using the following input values.

Function	Range	Valid Calibration Input Values
DC VOLTS	100 mV to 100 V 300 V	0.9 to $1.1 \times$ Full Scale 250 V to 303 V
OHMS, OHMS 4 W	100Ω to $10 \mathrm{M} \Omega$	0.9 to $1.1 \times$ Full Scale
DC CURRENT	10 mA to 1 A	0.9 to $1.1 \times$ Full Scale
AC VOLTS [1]	10 mV to 100 V 300 V	0.9 to $1.1 \times$ Full Scale 95 V to 303 V
AC CURRENT	1 A	9 mA to 11 mA
Frequency	Any	Any Input $>100 \mathrm{mV} \mathrm{rms}$, $1 \mathrm{kHz}-100 \mathrm{kHz}$

[1] Valid frequencies are as follows: $1 \mathrm{kHz} \pm 10 \%$ for the 1 kHz calibration, 45 kHz - 100 kHz for the 50 kHz calibration, and $10 \mathrm{~Hz} \pm 10 \%$ for the 10 Hz calibration.

Chapter 4 Calibration Procedures
Internal DMM Adjustments

Gain Adjustment Procedure

Adjustment for each function should be performed only in the order shown in the performance verification table. The performance verification tables used for gain adjustments start on page 77.

Review the "Test Considerations" (page 71) and "Gain Adjustment Considerations" (page 82) sections before beginning this test.

Configuration: DC functions $-61 / 2$ digits

$$
\text { AC functions - LF } 3 \mathrm{HZ} \text { :SLOW (in the Advanced menu) }
$$

1 Select Channel 210. Configure the channel to each function and range shown in the gain verification tables (pages $75-79$).
2 Apply the input signal shown in the "Input" column of the appropriate verification table.

Note: Always completetests in the same order as shown in the appropriate verification table

3 Press shiti viem to enter the calibration menu. Press viem again to begin the adjustment procedure.

4 Use the knob, \square and D to set the number in the display to the actual input value and press viem.
5 Perform the appropriate Gain Verification Test to check the calibration results.
6 Repeat steps 1 through 6 for each gain verification test point shown in the tables.

Note: Each rangein the gain adjustment proceduretakes less than 20 seconds to complete

Chapter 4 Calibration Procedures -10 Vdc Adjustment Procedure (Optional)

- 10 Vdc Adjustment Procedure (Optional)

The -10 Vdc calibration electronically enhances the Internal DMM's a-to-d converter linearity characteristic. This adjustment should ONLY be performed after servicing the A-to-D converter or replacement of the calibration RAM.

You will need a 34901A 20-Channel Multiplexer to perform the following procedures (seepage66). Install the Multiplexer in slot 200.
1 If a zero calibration has not been performed recently, perform one before beginning this procedure (se page 81).
2 Select Channel 210. Configure the channel as follows:
DC VOLTS
10 V range
61/2 digits
INTEG 100 PLC (in the Advanced menu)
INPUT R > 10 G (in the Advanced menu)
Before executing each test, you must press non to enable reading monitoring on the selected channel (or use the ROUTe: MON command from the remote interface).
3 Measure and note the voltage offset present at the end of the measurement cable by shorting the ends of the Channel 210 measurement cable. Be sure to use a copper wire and allow enough time for the residual thermal offset to stabilize (usually about 1 minute).

4 Connect the input cable to the calibrator output and set the calibrator to output +10 V . Allow enough settling time for any thermal offset voltages to stabilize (usually about 1 minute).
5 Perform a +10 V dc gain calibration. Press (shift viem to enter the calibration menu. Press viem again to begin the adjustment procedure.

6 Use the knob, \square and D to set the number in the display to the sum of the calibrator output and the measured offset (from step 3) and press viem. For example, if the calibrator output is 10.001 volts and the measured offset is $10 \mu \mathrm{~V}$, enter +10.001010 volts. When the adjustment finishes, verify that new readings fall within $\pm 20 \mu \mathrm{~V}$ of the calibrator output plus the offset.

Continued on next page..

Chapter 4 Calibration Procedures -10 Vdc Adjustment Procedure (Optional)

Continued from previous page...

1 Reverse the cable connections to the calibrator to create a - 10 Vdc voltage standard. Y ou must physically reverse the cables. DO NOT switch the output polarity of the calibrator.
2 Perform a-10V DC gain calibration. Press Shift viem to enter the calibration menu. Press view again to begin the adjustment procedure. Be sure to allow time for thermal offsets to stabilize (usually about 1 minute).

3 Use the knob \square and D to set the number in the display to the difference of the calibrator output and the measured offset (from step 3) and press view. Using the previous example values, enter $10 \mu \mathrm{~V}$ minus 10.001 volts or -10.000990 volts.

4 When the adjustment finishes, verify that new readings fall within $\pm 30 \mu \mathrm{~V}$ of the calibrator output minus the offset.

Plug-in Module Test Considerations

F or optimum performance, all test procedures should comply with the following recommendations:

- Assure that the calibration ambient temperature is stable and between $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$. Ideally the calibration should be performed at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.
- Assure ambient relative humidity is less than 80%.
- Install the plug-in module and allow a 45 minute warm-up period before verification or adjustment.
- Use shielded twisted pair Teflon ${ }^{\circledR}$ insulated cables to reduce settling and noise errors. Keep the input cables as short as possible.
- Remove all user wiring and connections from the plug-in modules before verification or adjustment.
- Use 4-wire Ohms measurement techniques for checking relay contact resistance. Check directly at the terminals where possible.

Chapter 4 Calibration Procedures
Relay Verification

Relay Verification

There are two methods you can use to verify relays:

- Read the relay cycle count.
- Measure the relay contact resistance.

Relay Cycle Count

The instrument has a Relay MaintenanceSystem to help you predict relay end-of-life. The instrument counts the cycles on each relay in the instrument and stores the total count in non-volatile memory on each switch module. You can use this feature on any of the relay modules and the internal DMM.

- In addition to the channel relays, you can also query the count on backplane relays and bank relays. Note that you cannot control the state of these relays from the front panel but you can query the count.
- You can also query the state of the three relays on the internal DMM. These relays are numbered " 1 ", " 2 ", and " 3 " (which correspond to relays K 102, K103, and K104 respectively). These relays open or close when a function or range is changed on a module.
- The 34908A multiplexer contains 40 channels which are switched (HI only) using only 20 relays. Each relay is used to switch HI on two different channels (and only one channel can be closed at a time). The channels are arranged such that channels 01 and 21 usedifferent contacts on the same relay. The remaining channels are also paired in the same manner (Channels 02 and 22, Channels 03 and 23, etc.). Therefore, when you query the relay count on a channel, the number reflects the number of times that the relay was closed. F or example, the relay count will al ways be the same on Channels 01 and 21.
- You can reset the count (allowed only from remote) but the instrument must be unsecured (se"To Unsecure for Calibration" on page 51 to unsecure the instrument).
- For more information on relay life and load considerations, refer to "Relay Life and Preventative Maintenance" in Chapter 8 of the 34970A User's Guide
- A procedure to read the relay cycle count is given on page 55.

(Optional)

Tests 1-5: \quad See the diagram on page 90 for the required connections for each test (be sure to probe the components at the indicated location). For these measurements, the 34901A is not installed in the 34970A. Record the 4-wire ohms measurements from the external DMM in the table below.

Note: The connections to the external DMM are different for each of Tests 1, 2, 4, and 5. Be sure to verify the connections shown in the table below for each of the four tests.

34901A Relay Contact Resistance Verification

This optional procedure uses an external DMM to make 4-wire ohms measurements across the relay contacts on the 34901A. The measured resistance is the series resistance of the two relay contacts (both contacts are in the same relay).

Note: Besureto read "Plug-in ModuleTest Considerations" on page87.

	External DMM Ohmmeter Connections				
Test $\#$	HI	LO	HI Sense	LO Sense	Measured Value
1	L401	J101, C14	L401	J101, C14	Ohms
2	L402	J101, C15	L402	J101, C15	Ohms
3	Add (Test 1 + Test 2)				
4	F501	Ch 21 I	F501	Ch 21 I	Ohms
5	F502	Ch 22 I	F502	Ch 22 I	Ohms

Chapter 4 Calibration Procedures Relay Verification

Note: Connect bare copper wires (approximately 3 cm in length) to thel terminals of Channels 21 and 22 as shown below. These wires will be used to make shorts across the channels in Tests 6 through 39.

Connections for 34901A Verification Tests 1 through 5

Chapter 4 Calibration Procedures Relay Verification

Tests 6-8: \quad Make the connections to the 34901A as shown in the diagram below. Be sure to route your wiring for proper strain relief and install the module cover. Install the 34901A in slot 200 of the 34970A. Open all channels on the module by performing a Factory Reset (press sio/ect and select "Recall State"; press sioofec again and select "Factory Reset"). Configure Channel 20 as follows: DC volts, 10 volt range, and 5½ digits.

Connections for 34901A Verification Tests 6 through 39

Enable reading monitoring by pressing mon on the selected channel (or use the ROUTe : MON command). Record the 4-wire ohms measurements from the external DMM in the following table.

		Extern	M O	eter Co	nections			
Test \#	Channel Configured	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
6	Ch 20	P2	P2	P1	P1	_ Ohms	2.00Ω	K421
7	Ch 20	P2	P2	P3	P3	_ Ohms	-	-
8	Subtract (Test 7 - Test 6)					Onms	2.00Ω	K422

Chapter 4 Calibration Procedures Relay Verification

Tests 9-10: Open all channels on the module by performing a F actory Reset. Configure Channel 10 (module in slot 200) as follows: 4-wire ohms, $1 \mathrm{k} \Omega$ range, and $51 / 2$ digits.

Enable reading monitoring by pressing Mon on the selected channel (or use the ROUTe : MON command). Record the 4 -wire ohms measurements from the external DMM in the following table.

		Extern	M	neter Co	ections			
Test \#	Channel Configured	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
9	Ch 10	P2	P2	P3	P3	Ohms	-	-
10	Subtract (Test 9 - Test 3)					_ Ohms	2.00Ω	K423

Tests 11-33: Open all channels on the module by performing a Factory Reset. F or each test, close only the channel shown in the "Channel Closed" column below (module in slot 200). Turn the M onitor Mode "off" and select "Banks J oined" from the Advanced menu. Record the 4-wire ohms measurements from the external DMM in the following table.

		External DMM Ohmmeter Connections						
Test $\#$	Channel Closed *	H1	LO	HI Sense	LO Sense	Measured Value	Test Limit	Relay Measured
11	Ch 1	P2	P2	P1	P1	Ohms	2.00Ω	K401
12	Ch 2	P2	P2	P1	P1	Ohms	2.00Ω	K402
13	Ch 3	P2	P2	P1	P1	Ohms	2.00Ω	K403
14	Ch 4	P2	P2	P1	P1	Ohms	2.00Ω	K404
15	Ch 5	P2	P2	P1	P1	Ohms	2.00Ω	K405
16	Ch 6	P2	P2	P1	P1	Ohms	2.00Ω	K406
17	Ch 7	P2	P2	P1	P1	Ohms	2.00Ω	K407

* Only the channel currently under test should be closed at one time. All other channels should be open.

Continued on next page..

Chapter 4 Calibration Procedures
Relay Verification
... Continued from previous page

		External DMM Ohmmeter Connections				Measured Value	Test Limit	Relay Measured
Test \#	Channel Closed*	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	LO Sense			
18	Ch 8	P2	P2	P1	P1	_ Ohms	2.00Ω	K408
19	Ch 9	P2	P2	P1	P1	_Ohms	2.00Ω	K409
20	Ch 10	P2	P2	P1	P1	_ Ohms	2.00Ω	K410
21	Ch 11	P2	P2	P1	P1	_ Ohms	2.00Ω	K411
22	Ch 12	P2	P2	P1	P1	_Ohms	2.00Ω	K412
23	Ch 13	P2	P2	P1	P1	_ Ohms	2.00Ω	K413
24	Ch 14	P2	P2	P1	P1	_ Ohms	2.00Ω	K414
25	Ch 15	P2	P2	P1	P1	_ Ohms	2.00Ω	K415
26	Ch 16	P2	P2	P1	P1	_ Ohms	2.00Ω	K416
27	Ch 17	P2	P2	P1	P1	_ Ohms	2.00Ω	K417
28	Ch 18	P2	P2	P1	P1	_ Ohms	2.00Ω	K418
29	Ch 19	P2	P2	P1	P1	_ Ohms	2.00Ω	K419
30	Ch 21	P4	P4	P5	P5	_ Ohms	-	-
31	Subtract (Test $30-$ Test 4)					_ Ohms	2.00Ω	K522
32	Ch 22	P4	P4	P5	P5	_ Ohms	-	-
33	Subtract (Test $32-$ Test 5)					O_Ohms	2.00Ω	K522

[^3]Chapter 4 Calibration Procedures Relay Verification

Tests 34-36: Close only channels Channels 20 and 22. Remove the 34901A from the 34970A and do not reinstall it for these tests.

On connector J101, remove the jumper between pins C14 and C15 (the top jumper shown in the diagram on page 91). On the remaining jumper connected to J101 (the bottom jumper shown in the diagram), move the end of the jumper from pin C12 to pin C16; the jumper should now short pins C13 and C16 together.

Cut, but do not remove, the copper shorts on Channels 21 and 22 (the wires will be used for the 4 -wire ohms measurements below). Add a copper short between the L and H terminals on Channel 20. Record the measured value as Test 34 in the table below.

Using the external DMM, make a 4-wire ohms measurement between the L and I terminals on Channel 21. Record the measured value as Test 35 in the table below.

		External DMM Ohmmeter Connections				Measured Value	Test Limit	Relay Measured
Test \#	Channel Closed	HI	LO	HI Sense	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$			
34	Ch 20*	P3	P3	P2	P2	_ Ohms	2.00Ω	K420
35	Ch 22*	Ch 211	Ch 21 L	Ch 211	Ch 21 L	_ Ohms	-	-
36	Subtract (Test 35 - Test 4)					Ohms	2.00Ω	K523

* The latching relays remain closed when the module is removed from the 34970A.

Chapter 4 Calibration Procedures Relay Verification

Test 37: Install the 34901A in slot 200 of the 34970A. Select and configure Channel 21 as follows: DC current, 1 amp range, and $51 / 2$ digits.

Enable reading monitoring by pressing mon on the selected channel (or use the ROUTe : MON command). Record the 4-wire ohms measurement from the external DMM in the following table.

		External DMM Ohmmeter Connections				Measured Value	Test Limit	Relay Measured
Test \#	Channel Configured	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{gathered} \text { LO } \\ \text { Sense } \end{gathered}$			
37	Ch 21	P4	P4	P5	P5	O_Ohms	2.00Ω	K521

Tests 38-39: Open all channels on the module by performing a Factory Reset. Close Channel 21 (module in slot 200). Remove the 34901A from the 34970A and do not reinstall it for the remaining tests. Using the external DMM, make a 4-wire ohms measurement between the L and I terminals on Channel 22. Record the measured value as Test 38 in the following table.

		External	DMM Ohm	neter Co	nections			
Test \#	Channel Closed	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
38	Ch 21	Ch 221	Ch 22 L	Ch 221	Ch 22 L	_ Ohms	-	-
39	Subtract (Test $38-$ Test 5)					Ohms	2.00Ω	K524

Chapter 4 Calibration Procedures Relay Verification

(Optional)

Tests 1-4:

34902A Relay Contact Resistance Verification

This optional procedure uses an external DMM to make 4-wire ohms measurements across the relay contacts on the 34902A. The measured resistance is the series resistance of the two relay contacts (both contacts are in the same relay).

Note: Besureto read "Plug-in ModuleTest Considerations" on page87.
See the diagram on page 97 for the required connections for each test (be sure to probe the components at the indicated location). For these measurements, the 34902A is not installed in the 34970A. Record the 4-wire ohms measurements from the external DMM in the table below.

Note: The connections to the external DMM are different for each of Tests 1, 2, and 3. Be sure to verify the connections shown in the table below for each of thethretests.

	External DMM Ohmmeter Connections				
Test $\#$	HI	LO	HI Sense	LO Sense	Measured Value
1	L300	J101, C12	L300	J101, C12	Ohms
2	L301	J101, C14	L301	J101, C14	Ohms
3	L302	J101, C15	L302	J101, C15	Ohms
4	Add (Test 2 + Test 3)				

Chapter 4 Calibration Procedures Relay Verification

Connections for 34902A Verification Tests 1 through 4

Chapter 4 Calibration Procedures Relay Verification

Tests 5-8: Make the connections to the 34902A as shown in the diagram below. Be sure to route your wiring for proper strain relief and install the module cover. Install the 34902A in slot 200 of the 34970A. Open all channels on the module by performing a Factory Reset (press (sioncel and select "Recall State"; press sior/ec again and select "Factory Reset"). Configure Channel 16 as follows: DC volts, 10 volt range, and $51 / 2$ digits.

Connections for 34902A Verification Tests 5 through 27
Enable reading monitoring by pressing mon on the selected channel (or use the ROUTe : MON command). Record the 4-wire ohms measurements from the external DMM in the following table.

		Extern	M O	eter Co	ections			
Test \#	Channel Configured	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
5	Ch 16	P3	P3	P1	P1	_ Ohms	-	-
6	Subtract (Test 5 - Test 1)					_Ohms	2.00Ω	K326
7	Ch 16	P3	P3	P2	P2	_ Ohms	-	-
8	Subtract (Test 6 - Test 5)					Ohms	2.00Ω	K327

Tests 9-10: Open all channels on the module by performing a Factory Reset. Configure Channel 08 (module in slot 200) as follows: 4-wire ohms, $1 \mathrm{k} \Omega$ range, and $51 / 2$ digits.

Enable reading monitoring by pressing won on the selected channel (or use the ROUTe : MON command). Record the 4 -wire ohms measurements from the external DMM in the following table.

		Extern	M O	neter Co	ections			
Test \#	Channel Configured	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
9	Ch 08	P3	P3	P2	P2	_Ohms	-	-
10	Subtract (Test 9-Test 4)					Ohms	2.00Ω	K328

Tests 11-27: Open all channels on the module by performing a Factory Reset. F or each test, close only the channels shown in the "Channels Closed" column below (module in slot 200). Turn the M onitor Mode "off" and select "Banks J oined" from the Advanced menu. Record the 4-wire ohms measurements from the external DMM in the following table.

External DMM Ohmmeter Connections								
Test $\#$	Channels Closed *	HI	LO	HI Sense	LO Sense	Measured Value	Test Limit	Relay Measured
11	Ch 16 \& 1	P3	P3	P1	P1	Ohms	2.00Ω	K301
12	Ch 16 \& 2	P3	P3	P1	P1	Ohms	2.00Ω	K302
13	Ch 16 \& 3	P3	P3	P1	P1	Ohms	2.00Ω	K303
14	Ch 16 \& 4	P3	P3	P1	P1	Ohms	2.00Ω	K304
15	Ch 16 \& 5	P3	P3	P1	P1	Ohms	2.00Ω	K305

* Only the channels currently under test should be closed at one time. All other channels should be open.

Continued on next page..

Chapter 4 Calibration Procedures
Relay Verification
... Continued from previous page

		External DMM Ohmmeter Connections				Measured Value	Test Limit	Relay Measured
Test \#	Channels Closed*	HI	LO	$\underset{\text { Hi }}{\mathrm{H}}$ Sense	LO Sense			
16	Ch 16 \& 6	P3	P3	P1	P1	_ Ohms	2.00Ω	K306
17	Ch 16 \& 7	P3	P3	P1	P1	_ Ohms	2.00Ω	K307
18	Ch 16 \& 8	P3	P3	P1	P1	_ Ohms	2.00Ω	K308
19	Ch 16 \& 9	P3	P3	P1	P1	_ Ohms	2.00Ω	K309
20	Ch 16 \& 10	P3	P3	P1	P1	_ Ohms	2.00Ω	K310
21	Ch 16 \& 11	P3	P3	P1	P1	_ Ohms	2.00Ω	K311
22	Ch 16 \& 12	P3	P3	P1	P1	_Ohms	2.00Ω	K312
23	Ch 16 \& 13	P3	P3	P1	P1	_ Ohms	2.00Ω	K313
24	Ch 16 \& 14	P3	P3	P1	P1	_ Ohms	2.00Ω	K314
25	Ch 16 \& 15	P3	P3	P1	P1	_Ohms	2.00Ω	K315
26	Ch 16 \& 15	P3	P3	P4	P4	_ Ohms	2.00Ω	-
27	Subtract (Test $26-$ Test 25)					Onms	2.00Ω	K316

* Only the channels currently under test should be closed at one time. All other channels should be open.

(Optional)
 34903A Relay Contact Resistance Verification

1 Be sure to read "Plug-in M odule Test Considerations" on page 87.
2 Install the 34903A module in slot 100. Close Channels 01 through 20. Remove the module from the 34970A.

3 Measure the resistance from the CM terminal to the NO terminal on each channel.

4 Install the module in slot 100. Open Channel 01 through 20. Remove the module from the 34970A.

5 Measure the resistance from the CM terminal to the NC terminal on each channel.

Note: In general, a new relay should havea contact resistance of less than 0.2Ω. Relays with contact resistancein excess of 1.2Ω should bereplaced.

Chapter 4 Calibration Procedures Relay Verification

(Optional) 34904A Relay Contact Resistance Verification

This optional procedure uses an external DMM to make 4-wire ohms measurements across the relay contacts on the 34904A.

1 Be sure to read "Plug-in Module Test Considerations" on page 87.
2 Connect coppers shorts from H to L on each of the eight columns (COL1 through COL8) as shown below. Connect four dual banana plugs to the four rows as shown below (ROW1 through ROW4). Be sure to route your wiring for proper strain relief and install the module cover. Install the 34904A in slot 200 of the 34970A.

Connections for 34904A Verification Tests

Chapter 4 Calibration Procedures
Relay Verification

Tests 1-32: Open all channels on the module by performing a Factory Reset (press sio/Rel and select "Recall State"; press siop Rol again and select "Factory Reset"). For each test, close only the channels shown in the "Channels Closed" column below (module in slot 200). Record the 4-wire ohms measurements from the external DMM in the following table.

Note: To prepare the modulebetween tests, press and hold down $\xrightarrow[\substack{\text { carsd } \\ \text { Rese }}]{ }$ until "Card Reset" is displayed on thefront pane

		External DMM Ohmmeter Connections						
Test \#	Channels Closed*	HI	LO	HI Sense	$\begin{gathered} \text { LO } \\ \text { Sense } \end{gathered}$	Measured Value	Test Limit	Relay Measured
1	Ch 11 \& 41	P1	P1	P4	P4	_ Ohms	2.00Ω	K101
2	Ch 12 \& 42	P1	P1	P4	P4	_ Ohms	2.00Ω	K102
3	Ch 13 \& 43	P1	P1	P4	P4	_ Ohms	2.00Ω	K103
4	Ch 14 \& 44	P1	P1	P4	P4	_ Ohms	2.00Ω	K104
5	Ch 15 \& 45	P1	P1	P4	P4	_ Ohms	2.00Ω	K105
6	Ch 16 \& 46	P1	P1	P4	P4	_ Ohms	2.00Ω	K106
7	Ch 17 \& 47	P1	P1	P4	P4	_Ohms	2.00Ω	K107
8	Ch 18 \& 48	P1	P1	P4	P4	_ Ohms	2.00Ω	K108
9	Ch 21 \& 41	P2	P2	P4	P4	_ Ohms	2.00Ω	K201
10	Ch 22 \& 42	P2	P2	P4	P4	_ Ohms	2.00Ω	K202
11	Ch 23 \& 43	P2	P2	P4	P4	_ Ohms	2.00Ω	K203
12	Ch 24 \& 44	P2	P2	P4	P4	_Ohms	2.00Ω	K204
13	Ch 25 \& 45	P2	P2	P4	P4	_ Ohms	2.00Ω	K205
14	Ch 26 \& 46	P2	P2	P4	P4	Onms	2.00Ω	K206
15	Ch 27 \& 47	P2	P2	P4	P4	_Ohms	2.00Ω	K207
16	Ch 28 \& 48	P2	P2	P4	P4	_ Ohms	2.00Ω	K208

* Only the channels currently under test should be closed at one time. All other channels should be open.

Continued on next page..

Chapter 4 Calibration Procedures
Relay Verification
... Continued from previous page

		External DMM Ohmmeter Connections						
Test \#	Channels Closed*	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
17	Ch 31 \& 41	P3	P3	P4	P4	_ Ohms	2.00Ω	K301
18	Ch 32 \& 42	P3	P3	P4	P4	_ Ohms	2.00Ω	K302
19	Ch 33 \& 43	P3	P3	P4	P4	\ldots Ohms	2.00Ω	K303
20	Ch 34 \& 44	P3	P3	P4	P4	Onms	2.00Ω	K304
21	Ch 35 \& 45	P3	P3	P4	P4	_ Ohms	2.00Ω	K305
22	Ch 36 \& 46	P3	P3	P4	P4	\ldots Ohms	2.00Ω	K306
23	Ch 37 \& 47	P3	P3	P4	P4	\ldots Ohms	2.00Ω	K307
24	Ch 38 \& 48	P3	P3	P4	P4	\ldots Ohms	2.00Ω	K308
25	Ch 41 \& 11	P4	P4	P1	P1	\ldots Ohms	2.00Ω	K401
26	Ch 42 \& 12	P4	P4	P1	P1	\ldots Ohms	2.00Ω	K402
27	Ch 43 \& 13	P4	P4	P1	P1	\ldots Ohms	2.00Ω	K403
28	Ch 44 \& 14	P4	P4	P1	P1	Ohms	2.00Ω	K404
29	Ch 45 \& 15	P4	P4	P1	P1	\ldots Ohms	2.00Ω	K405
30	Ch 46 \& 16	P4	P4	P1	P1	\ldots Onms	2.00Ω	K406
31	Ch 47 \& 17	P4	P4	P1	P1	Ohms	2.00Ω	K407
32	Ch 48 \& 18	P4	P4	P1	P1	_ Ohms	2.00Ω	K408

* Only the channels currently under test should be closed at one time. All other channels should be open.

Chapter 4 Calibration Procedures Relay Verification

(Optional)

34905A/06A Relay Contact Resistance Verification
Note: Besureto usethe correct SMB connectors (50Ω or 75Ω).

1 Be sure to read "Plug-in Module Test Considerations" on page 87.
2 Prepare the module by connecting an SMB short to $\mathrm{CH} 10, \mathrm{CH} 11$, CH 12 , and CH 13 . Connect the COM1 terminal to the DMM. Be sure to use the correct SMB connectors for the module.
3 Install the module in slot 100.
4 Close Channel 11.
5 Measure the resistance on the DMM.
6 Repeat steps 4 and 5 for Channels 12, 13, and 14.
7 Repeat steps 2, 3, 4, 5, and 6 for the channels connected to COM2.

Note: In general, a new reday should havea contact resistance of less than 0.5Ω. Relays with contact resistancein excess of 1Ω should bereplaced.

Chapter 4 Calibration Procedures Relay Verification

(Optional) 34908A Relay Contact Resistance Verification

This optional procedure uses an external DMM to make 4-wire ohms measurements across the relay contacts on the 34908A. Note that when measuring the resistance of the contacts of the channels relays, the test also indudes the Bank Switch.

Note: Besureto read "Plug-in ModuleTest Considerations" on page87.

Test 1: \quad See the diagram on page 107 for the required connections for this test (be sure to probe the inductor at the indicated location). F or this measurement, the 34908A is not installed in the 34970A. Record the 4-wire ohms measurements from the external DMM in the table below.

	External DMM Ohmmeter Connections				
Test $\#$	HI	LO	HI Sense	LO Sense	Measured Value
1	L 400	J101, C12	L 400	J101, C12	

Chapter 4 Calibration Procedures

Relay Verification

Connections for 34908A Verification Test 1

Chapter 4 Calibration Procedures Relay Verification

Tests 2-3: \quad Make the connections to the 34908A as shown in the diagram below. Be sure to route your wiring for proper strain relief and install the module cover. Install the 34908A in slot 200 of the 34970A. Open all channels on the module by performing a Factory Reset (press siofecl and select "Recall State"; press sior/ec again and select "Factory Reset"). Configure Channel 01 as follows: DC volts, 10 volt range, and $51 / 2$ digits.

Connections for 34908A Verification Tests 2 and 3

Enable reading monitoring by pressing mon on the selected channel (or use the ROUTe : MON command). Record the 4-wire ohms measurements from the external DMM in the following table.

		External DMM Ohmmeter Connections				Measured Value	Test Limit	Relay Measured
Test \#	Channel Configured	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{gathered} \text { LO } \\ \text { Sense } \end{gathered}$			
2	Ch 01	H Com	L Com	H Com	L Com	O Ohms	-	-
3	Subtract (Test $2-$ Test 1)					O_Ohms	2.00Ω	K421

Chapter 4 Calibration Procedures Relay Verification

Tests 4-43: \quad Make the connections to the 34908A as shown in the diagram below. Connect copper shorts between all channels as shown. Be sure to route your wiring for proper strain relief and install the module cover. Install the 34908A in slot 200 of the 34970A.

Connections for 34908A Verification Tests 4 through 43

F or each test shown in the table starting on the next page, close only the channels shown in the "Channels Closed" column (closing one channel will open the previously closed channel). Record the 4-wire ohms measurements from the external DMM in the table.

Chapter 4 Calibration Procedures Relay Verification

External DMM Ohmmeter Connections

Test \#	Channels Closed*	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{gathered} \text { LO } \\ \text { Sense } \end{gathered}$	Measured Value	Test Limit	Relay Measured
4	Ch 1	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K401, K422
5	Ch 2	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K402, K422
6	Ch 3	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K403, K422
7	Ch 4	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K404, K422
8	Ch 5	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K405, K422
9	Ch 6	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K406, K422
10	Ch 7	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K407, K422
11	Ch 8	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K408, K422
12	Ch 9	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K409, K422
13	Ch 10	H Com	L Com	H Com	L Com	_Ohms	2.00Ω	K410, K422
14	Ch 11	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K411, K422
15	Ch 12	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K412, K422
16	Ch 13	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K413, K422
17	Ch 14	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K414, K422
18	Ch 15	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K415, K422
19	Ch 16	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K416, K422
20	Ch 17	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K417, K422
21	Ch 18	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K418, K422
22	Ch 19	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K419, K422
23	Ch 20	H Com	L Com	H Com	L Com	_Ohms	2.00Ω	K420, K422

* Only the channels currently under test should be closed at one time. All other channels should be open.

Continued on next page..

Chapter 4 Calibration Procedures
Relay Verification
... Continued from previous page

External DMM Ohmmeter Connections

Test \#	Channels Closed*	HI	LO	$\begin{gathered} \mathrm{HI} \\ \text { Sense } \end{gathered}$	$\begin{aligned} & \text { LO } \\ & \text { Sense } \end{aligned}$	Measured Value	Test Limit	Relay Measured
24	Ch 21	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K401, K422
25	Ch 22	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K402, K422
26	Ch 23	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K403, K422
27	Ch 24	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K404, K422
28	Ch 25	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K405, K422
29	Ch 26	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K406, K422
30	Ch 27	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K407, K422
31	Ch 28	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K408, K422
32	Ch 29	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K409, K422
33	Ch 30	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K410, K422
34	Ch 31	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K411, K422
35	Ch 32	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K412, K422
36	Ch 33	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K413, K422
37	Ch 34	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K414, K422
38	Ch 35	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K415, K422
39	Ch 36	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K416, K422
40	Ch 37	H Com	L Com	H Com	L Com	Ohms	2.00Ω	K417, K422
41	Ch 38	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K418, K422
42	Ch 39	H Com	L Com	H Com	L Com	_ Ohms	2.00Ω	K419, K422
43	Ch 40	H Com	L Com	H Com	L Com	_Ohms	2.00Ω	K420, K422

* Only the channels currently under test should be closed at one time. All other channels should be open.

Note: If thefirst 20 or last 20 redays havehigh resistancevalues, it is likey that reay K422 is bad.

Chapter 4 Calibration Procedures

Thermocouple ReferenceJ unction (Optional)

Note: You should perform these verification and adjustments if you are using the modules for thermocouple measurements.

To make a thermocouple measurement a known reference junction temperature measurement must be made. The reference junction temperature is measured by two solid state temperature sensors in the input connection area on the module. The adjustments store calibration constants used to correct the measurements from the temperature sensors.

Thermocoupl emeasurements areonly supported by the 34901A, 34902A and 34908A.

Thermocouple ReferenceJ unction Verification

1 Read "Plug-in Module Test Considerations" on page 87.
2 Connect a calibrated thermocouple to one of the following channels:
For the 34901A: Channel 10
For the 34902A: Channel 8
For the 34908A: Channel 10
s Install the module in slot 100.
6 Place theJ Type calibrated thermocouple at a known temperature (ice bath or calibrator).
7 Select Channel 110 (or 108). Configure the channel as follows:
TEMPERATURE
THERMOCOUPLE
J TYPE
INTEG 10 PLC (Advanced menu)
INTERNAL REF (Advanced menu)
Before executing each test, you must press won to enable reading monitoring on the selected channel (or use the ROUTe: MON command from the remote interface).

8 Subtract the thermocouple error from the displayed temperature. Verify the result is within $\pm 1.0^{\circ} \mathrm{C}$ of the known temperature (set in step 3).

Chapter 4 Calibration Procedures Thermocouple Reference Junction (Optional)

Thermocouple Reference J unction Adjustments

These adjustments are plug-in module specific and only affect thermocouple measurements. The calibration constants created by these adjustments are stored in non-volatile memory on theplug-in module.

1 Connect a $10 \mathrm{k} \Omega$ (YSI 44031) thermistor to each of the following channels (a kit of five thermistors is available as Agilent part number 34308A):

For the 34901A Channels 6 and 17
For the 34902A Channels 6 and 11
For the 34908A Channels 6 and 16
Keep the thermistor leads as short as possible. Locate the thermistor as near to the input connectors as possible.

2 Install the plug-in module in the mainframe in slot 200. Apply power and allow a 2 hour warm-up.
3 Set $10 \mathrm{k} \Omega$ thermistor measurements on Channels 206 and 217 (or 206 and 211). Before executing each test, you must press Mon to enable reading monitoring on the selected channel (or use the ROUTe: MON Command from the remote interface).

4 Press Shiti view to enter the calibration menu. Press view again to begin the adjustment procedure.
5 Verify the adjustment (se page 112).

Chapter 4 Calibration Procedures 34907A Analog Output

34907A Analog Output

Analog Output Verification Test

This procedure is used to check the calibration of the analog outputs on the 34907A Multifunction Module. Install the module in slot 200. Verification checks are performed only for those output values with unique calibration constants.

1 Make connections to analog output channels as shown below.

2 F or each analog output, set each output value in the table below. Compare measurement results to the appropriate test limits shown in the table.

DAC Output	Quick Check	Measured Output	Error from Nominal 1 year
$\begin{gathered} \hline 0.000 \mathrm{~V} \\ 10.000 \mathrm{~V} \end{gathered}$	Q	$\begin{gathered} 0.000 \mathrm{~V} \\ 10.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 20 \mathrm{mV} \\ & \pm 45 \mathrm{mV} \end{aligned}$

Chapter 4 Calibration Procedures 34907A Analog Output

Analog Output Adjustment

Note: Install the 34907A modulein the mainframe and allow a 45 minute warm-up before performing these procedures.

This adjustment procedure sets a zero adjustment and a gain adjustment constant for each DAC output. Y ou must perform all the adjustments on one analog output channel before adjusting the other analog output channel.

1 Install the module in slot 100.
Select the first analog output channel (104).
2 Connect an external DMM to the output terminals.
3 Set the analog output to 00.000 V .
4 Press shift view to enter the calibration menu. Press view again to begin the adjustment procedure.

5 Use the knob \square and D to set the number in the display to the measured output value and press viem to complete the adjustment.
6 Set the analog output to 10.000 V .
7 Press shift viem to enter the calibration menu. Press view again to begin the adjustment procedure.

8 Use the knob, \square and \square to set the number in the display to the measured output value and press viem to complete the adjustment.
9 Repeat steps 1 through 8 for Channel 105.
10 Perform the Voltage Output Verification Test on page 114 to verify the adjustment.

5

Theory of Operation

Theory of Operation

This chapter is organized to provide descriptions of the circuitry contained on each schematic shown in chapter 8 . A block diagram overview is provided followed by more detailed descriptions of the circuitry contained in the schematics chapter.

- System Block Diagram, on page 119
- Floating Logic, on page 120
- Memory, on page 123
- Earth-Referenced Logic, on page 124
- Power Supplies, on page 125
- Front Panel, on page 127
- Backplane, on page 128
- Internal DMM, on page 129
- Switch Modules, on page 138
- Multifunction Module, on page 151

The self-test procedures are described in chapter 6.

Chapter 5 Theory of Operation System Block Diagram

System Block Diagram

A simplified block diagram is shown below. A detailed system block diagram is shown on page 221. Not all systems have an Internal DMM. In these systems, the internal DMM connections to the analog bus and the floating logic are left open. The major portions of each block are described in the following sections.

Chapter 5 Theory of Operation
Floating Logic

Floating Logic

U nless otherwise noted, components in this discussion are located on the A1 circuit assembly (34970-66501). The schematics are included in Chapter 8 starting on page 224.

The floating common logic controls the operation of the entire instrument. All measurement control and remote interface command interpretation is performed in the main controller, U205. The front panel controller, the I/O controller, and all of the plug-in module controllers, act as slaves to U205. The floating common logic is comprised of the main controller U205, custom ASIC U209, calibration memory U 201, 12 M Hz clock oscillator U 204, and microprocessor supervisor U104.

The microprocessor supervisor U104 performs the following functions:

- Monitors the regulated 5V floating supply and generates the reset signal for main controller U 205 when the voltage drops below operating levels.
- Monitors the unregulated side of the 5V floating supply in order to generate an early warning signal (PWRFAIL) when power is lost.
- Provides automatic switch over to the battery BT101 for the +5 V _NV supply when the 5V_FLT supply drops below the battery voltage.
- Blocks the main controller's write signal (WR_N) while the 5V_FLT supply is below operating level.

Chapter 5 Theory of Operation Floating Logic

The main controller, U205, is a 16-bit microcontroller incorporating many built-in features:

- A 10-bit, successive approximation ADC with selectable inputs is used to convert two signals: FLASH and FRQRNG. The FLASH signal is the residual charge on the main integrating ADC output from the internal DMM assembly (A4). The FRQRNG signal (also from the internal DMM) is used to make voltage ranging decisions for frequency and period measurements.
- A pulse-width-modulation port, after filtering the 23 kHz output with R221,C224, and R259, produces DC voltages between 0 V and 5 V . This voltage, PREADJ, is used to adjust the precharge amplifier offset voltage in U101 on the internal DMM assembly (A4).
- A full, UART controlled, serial port is used to communicate with the I/O processor through optoisolators U303 and U214. Data is sent in an 11-bit frame at a rate of 187.5 kbits/second. The 11-bit frame is configured for one start bit, nine data bits, and onestop bit.
- A timer is used to measure the power line frequency on LSENSE. Frequencies between 55 Hz and 66 Hz result in the use of a 60 Hz standard for the DMM integration period. All other frequencies will result in the use of a 50 Hz standard.
- A 16-bit counter counts pulses on CNT to create, along with the 8-bit counter in U 209, a 24-bit counter for the internal DMM.

Chapter 5 Theory of Operation
Floating Logic

The custom ASIC, U209, provides:

- Memory Address mapping - The main controller multiplexes address and data on the same bus. U209 latches the address and drives a separate memory address bus (MA(19:1)). U209 allows the main controller to access a much larger memory space than its 16-bit address bus would allow. It also partitions memory into separate data and instruction segments and a "mappable" segment that can be used for either data or instructions.
- Communications - U209 provides three serial communication ports. A 187.5 kbit/second, 9 data bit, UART for communicating with the isol ated backplane (FLT_BPDO and FLT_BPDI_N).A duplicate, 9-bit UART to communicate with the frōnt panel (FPDO and FPDI). And a simple, $1.5 \mathrm{M} \mathrm{bit} /$ second, clocked shift-register to control the configuration registers on the DMM assembly (CFG_SCK, CFG_DO, and CFG_DI).
- Real Time Clock - U209 provides time of day and date, a periodic interrupt, and a squarewave generator. The date is based on a 100 year calendar (it accurately tracks leap years until its two digit year counter rolls over). U209 uses the battery-backed +5V_NV supply.
- DMM support - U209 provides conversion logic for the analog-to-digital converter and a counter for both the ADC and the frequency measurement features of the DMM. When used for the ADC, the COMP input functions both as a clocked comparator and the slope counter input. When used for frequency measurement, FREQIN is the input to the counter. In both cases, the 8-bit counter produces the lower bits of a 24 -bit counter. The counter overflow signal, CNT, is counted by U205 to produce the upper 16 -bits of the count. The SYNC signal produced by U205, is used to latch the count.

Device U201 is a 512 byte, ferroelectric RAM that is accessed via a serial interface. This device only contains data relevant to the A1 assembly. This data is combined with data retrieved from A4U450 to completely calibrate the internal DMM. The two devices, although on different assemblies, share the same I/O signals, CALSCK and CALDAT, that allow them to be read (and written) by U205.

Chapter 5 Theory of Operation Memory

Memory

U nless otherwise noted, components in this discussion are located on the A1 circuit assembly (34970-66501). The schematics are included in Chapter 8 starting on page 224.

The main controller, U205, uses 512 K bytes of ROM and 544 K bytes of RAM. ASIC U209 provides the memory mapping that allows access to this large memory space. The memory map as seen by the main controller is as follows:

Address	Maps to
0100 H thru 1FBFH	00100 H thru 01FBFH in RAM for data fetches
0100 H thru 1FBFH	00100 H thru 01FBFH in ROM for instr. fetches
1 1FC0H thru 1FDFH	registers in U209
2000 H thru 5FFFH	02000 H thru 05FFFH in ROM
6000 H thru 7FFFH	06000 H thru 07FFFH in RAM for data fetches
6000 H thru 7FFFH	06000 H thru 07FFFH in ROM for instr. fetches
8000 H thru FFFFH	any selected 32 Kbyte page of ROM or RAM

The memory is organized with a 16-bit data bus (AD(15:0)) and a 19-bit address bus (MA(19:1)). The memory address is produced by U 209 latching the address present on AD(15:0) when U205 asserts ALE_FLT. Reads of memory are always 16 -bits wide (there is a single RD_N signal). Writes, however, can be byte-wide and therefore U209 produces both a high-byte write strobe, MWRH_N, and a low-byte write strobe, MWRL_N. These write signals are based on the latched 0-bit of the address and the BHE_N signal produced by the main controller, U205.

The ROM memory consists of a single, 256Kx16 device, U401. The RAM memory consists of five devices: U402, U403, U404, U 405, and U410. A uniform, $256 \mathrm{~K} \times 16$, memory block is formed by the four $128 \mathrm{~K} \times 8$ devices, U 402 through U 405 . A separate, $32 \mathrm{~K} \times 8$ block is formed by U410 and is available through special programming of U209.

Earth-Referenced Logic

U nless otherwise noted, components in this discussion are located on the A1 circuit assembly (34970-66501). The schematics are included in Chapter 8 starting on page 224.

The earth-referenced logic circuits provide all rear panel input/output capability. Microprocessor U305 handles GPIB (IEEE-488) control through bus interface chip U309 and bus receiver/driver chips U 310 and U311.

The RS-232 interface is controlled by U305 through U307. RS-232 transceiver chip U308 provides the required level shifting to approximate ± 9 volt logic levels through on-chip charge-pump power supplies using capacitors C317 through C320. Communication between the earth referenced logic interface circuits and the floating measurement logic is accomplished through an optically-isolated bi-directional serial interface. I solator U214 couples data from U305 to microprocessor U205. Isolator U303 couples data from U305 to microprocessor U205.

U 305 also:

- Controls power to the backplane as well as all rear panel interfaces (GPIB, RS-232, Alarms, External Triggers). Backplane power is turned on or off based upon commands received from U 205.
- Drives the backplane reset signal (BPRST) based upon commands from U205.
- Monitors the backplane service request (BPSRQ_N) and reports to U205 when it is asserted.

U306B, U306C, U306D, and U306E drive the alarm outputs. The alarm is a low true signal at the sub miniature D connector on the rear panel. U306F drives the channel closed output signal.

The external trigger input is buffered by U304C and U304D.

Power Supplies

U nless otherwise noted, components in this discussion are located on the A1 circuit assembly (34970-66501). The schematics are included in Chapter 8 starting on page 224.

The instrument uses two types of power supplies: floating supplies and earth referenced supplies. The floating supply outputs are $\pm 18 \mathrm{Vdc}$, +5 Vdc , and a 6 Vrms center tapped filament supply for the vacuum fluorescent display. The earth referenced and backplane circuits are powered from a single +5 Vdc supply.

The ac mains are connected by module P1. This module includes the functions of mains connection and line voltage selection (100/120/ 220/240). The internal DM M automatically configures for the applied line frequency by counting the frequency of the output of clamp circuit CR106, R102, C103 (LSENSE).

The +5 volt floating supply is produced by bridge rectifier CR105, filter capacitor C104, and regulator U 103. The output of CR105 is sensed by U104 and compared to the the voltage from battery BT101. U 104 turns on the +5 V floating supply through Q120. If the output of CR105 falls below 6.8 V , U 104 provides a PWRFAIL signal to the main processor. At initial power on, U104 resets the main processor with the FLT_RST line. This supply powers all floating logic. The internal $\overline{\text { DMM }}$ relay drive circuits are also powered from this supply.

The floating ± 18 volt supplies are produced by bridge rectifier CR109, filter capacitors C107 and C109, and regulators U 105 and U 106.
These supplies are used to power all measuring circuits. In addition, the vacuum fluorescent display is driven from the ± 18 volt supplies.

A separate winding of T1 provides a center tapped 6 Vrms filament supply for the display. Q110A and Q110B turn on and off the filament supply in response to the FILPWR signal from the main controller through U107A.

Chapter 5 Theory of Operation Power Supplies

The 5 volt earth referenced supply (+5 V_ER) is produced by rectifier CR101, CR102, CR103, CR104, and regulator U101. This supply is earth referenced by the screw which mounts the PC board to the instrument chassis.

The unswitched +5V_ER supplies U305, U303, U320, and U302. The rear-panel interfaces (GPIB, RS-232, Alarms, and external triggers) are powered from the switched $+5 \mathrm{~V}, \mathrm{BP}$ supply to ensure that when power is turned off no voltages are present at the interfaces.

The +5V_ER supply is switched by Q101A and Q101B to create the +5 V _BP (backplane) and fan power supplies.

U ndervoltage sensor U102 provides the earth reference controller reset at initial power on.

Chapter 5 Theory of Operation Front Panel

Front Panel

U nless otherwise noted, components in this discussion are located on the A2 circuit assembly (34970-66502). The schematics are included in Chapter 8 starting on page 229.

The front-panel circuits consist of vacuum fluorescent display control, display high voltage drivers, and keyboard scanning. Communication between the front panel and floating logic circuits is accomplished through a 2-wire bi-directional serial interface. The front-panel logic operates from -13 volts (logic 1) and -18 volts (logic 0). The two serial communication signals are level shifted by comparator U6 from the floating logic 0 V to 5 V levels to the -18 V to -13 V levels present on the front panel assembly. The front panel logic high supply (-13 volts) is produced from the -18 volt supply by voltage regulator U7.

Display anode and grid voltages are +18 volts for an on segment and -18 volts for an off segment. The -11 V cathode bias for the display is provided by the main pc boards filament winding center tap bias circuit A1CR108, A1R106, and A1C106 shown on the power supply schematic (se page 224).

Keyboard scanning is accomplished through a conventional scanned row-column key matrix. Keys are scanned by outputting data at microprocessor U 1 port pins P0.0 through P0.4 to poll each key column for a key press. Column read-back data are read by the microprocessor at port pins P2.0 through P2.3 for decoding and communication to the floating logic circuits. Rotary knob quadrature inputs are read directly by the microprocessor port pins P2.6 and P2.7.

The standby power switch, S19, provides a low true signal to main controller A1U205. In turn, A1U205 takes actions that either place the instrument in the "standby mode" or "on" mode. In "standby", both the filament supply to the front panel and the +5 V _BP supply to the backplane, rear panel interfaces, and fan are turned off.

Chapter 5 Theory of Operation Backplane

Backplane

U nless otherwise noted, components in this discussion are located on the A3 circuit assembly (34970-66503). The schematics are included in Chapter 8 starting on page 231.

The backplane contains three connectors, P101, P102, and P103 for connection to the plug-in modules. The parallel lines in these connectors are divided into two groups to form the analog bus and digital bus.

Analog Bus

The analog bus connects the signals from the plug-in modules to the Internal DMM. There are five lines in the analog bus, HI, LO, OHMS_HI, OHMS_LO, and AMPS. The HI and LO lines are protectēd from overvoltages by E101, E 102, RV101, RV102, R101, R160, L101, L102, and C109.

P105 makes the analog bus connection to the internal DMM.

Digital Bus

The digital bus uses 10 lines for communication and control. P104 makes the digital bus connection to the earth referenced logic and floating logic.

Signal	P101, P102, P103 Pins	Comments
Slot ID	A6, A7, A8	Unique binary code for each slot.
DATA_IN	B6	Serial module data from the floating logic.
DATA_OUT	C6	Serial module data to the floating logic.
DGND	A5, B5, B7, C5, C7	Earth referenced digital ground.
+5 V	A3, B3, C3	Earth referenced module power supply.
Earth Ground	A1, B1, C1	Earth referenced zap return ground.
RST	B8	Module reset from the earth referenced logic.
SRQ	C8	Module service request to the earth referenced logic.

Chapter 5 Theory of Operation Internal DMM

Internal DMM

DMM Block Diagram

The internal DMM block diagram is shown on the system block diagram on page 221. A portion of the block diagram is shown below.

Chapter 5 Theory of Operation Internal DMM

Input

U nless otherwise noted, components in this discussion are located on the A4 circuit assembly (34970-66504). The schematics are included in Chapter 8 starting on page 234.

The purpose of the I nput section is to connect the Input HI terminal to the various measuring functions. This is accomplished through K 102, K103, and K104. Additionally, connections are made for the 4-wire ohms HI Sense and LO Sense inputs. Shunt selection (ranging) and voltage sensing are also performed for the current function. The table bel ow shows the state of each relay for each measuring function. All relay coils are driven from U150.

Function	K102	K103	K104	Sense at:
$0.1 \mathrm{~V}-10 \mathrm{Vdc}$	Set	Set	Set [1]	U101-5
$100 \mathrm{~V}-300 \mathrm{Vdc}$	Set	Reset	Set	U102-12
2-Wire Ohms	Reset	Set	Reset [2]	U101-5
4-Wire Ohms	Reset	Set	Reset $[2]$	[3]
AC Voltage	Set	Reset	Reset	ACIN
Frequency/Period	Set	Reset	Reset	ACIN
3 A, 1A DC I	Reset	Reset	Reset	U101-10
100 mA, 10 mA DC I	Set	Reset	Reset	U101-10
1A AC I	Reset	Reset	Set	AC_IN

[1] K104 will be reset when input resistance is selected to $>10,000 \mathrm{M} \Omega$ through the menu.
[2] K104 will be set for the $100 \mathrm{M} \Omega$ range.
[3] Configurations shown are for the current source output (HI) terminal. The measurement sense is accomplished through the Sense HI / Sense LO terminals.

Chapter 5 Theory of Operation
Internal DMM

Input Amplifier

Unless otherwise noted, components in this discussion are located on the A4 circuit assembly (34970-66504). The schematics are included in Chapter 8 starting on page 234.

The DC Amplifier circuit is used by every measuring function except frequency and period. Analog switch U 101B selects various input signals for measurement by the ADC. Switch U 101B has three sources which can be dynamically selected: measure customer input (MC), measure zero input (MZ), and precharge (PRE). The MC state is the actual input measurement. The MZ state measures internal offset voltages which are also present in the MC measurement. The final measurement result is computed from MC-MZ. The PRE state is used to "precharge" internal capacitances to reduce charge injection to the input terminal from the dynamic switching of MC and MZ. Autozero off disables the dynamic switching of the amplifier input. However, a new MZ value is automatically taken whenever a new function or range is selected, even if autozero is turned off.

In the dc voltage function, ranging is accomplished through both input relay switching (K102-K 104) and solid state switching (U101). As a result, the input to the ADC has the same nominal 10 V value for a full scale input on each range. The dc input amplifier is comprised of source follower dual FET U 104, amplifier U106, and associated bias circuitry. The feedback resistors U 102C and switches U 101C select non-inverting amplifier gains of x1, x10, and x100 for the dc input amplifier circuit. Amplifier output ADI N drives the dc input to the a-to-d converter for all measuring functions.

DCV Range	U102A Divider	U101 Input	Amplifier Gain	ADC Input
100 mV		Pin 5	x 100	10 V
1 V		Pin 5	x 10	10 V
10 V		Pin 5	x 1	10 V
100 V	$1 / 100$	Pin 8	x 10	10 V
1000 V	$1 / 100$	Pin 8	x 1	10 V

Chapter 5 Theory of Operation
Internal DMM

In the DC current function, a current is applied between the Input I and LO terminals. Ranging is accomplished by relay K 102 and amplifier gain switching in U101. Since a known resistor (the shunt resister) is connected between these terminals, a voltage proportional to the unknown current is generated. The voltage sensed at R121 is measured by the multimeter's dc circuitry. The table bel ow illustrates the dc current measuring function configurations.

DCI Range	Shunt Resistor	U101-10 Input	Amplifier Gain	ADC Input
1 A	0.1Ω	100 mV	$\times 100$	10 V
100 mA	5.1Ω	510 mV	$\times 10$	5.1 V
10 mA	5.1Ω	51 mV	x 100	5.1 V

Resistance measurements are made by applying a known current through an unknown resistance. The resulting vol tage drop across the unknown resistance is then measured by the multimeter's dc circuitry. The $100 \mathrm{M} \Omega$ range is measured using the known internal $10 \mathrm{M} \Omega$ resistance (U102A) in parallel with the unknown input resistance while applying the 500 nA current source. The result is computed from the measured data. The internal $10 \mathrm{M} \Omega$ resistance is determined whenever a zero calibration is performed.

In the 2-wire ohms function, the voltage drop is measured across the Input HI and Input LO terminals. In the 4-wire ohms function, the voltage is measured across the HI Sense and LO Sense terminals. Lead resistances in series with the current source (Input HI-LO) are not part of the final measurement. However, they do reduce the available current source compliance voltage for the resistor under test. The ohms current source will become non-linear when the compliance voltage limit is exceeded. The full scale voltage devel oped across the unknown resistor and the dc amplifier gain for each resistance range are tabulated below.

Ohms Range	Voltage Across R	Amplifier Gain	ADC Input
100Ω	100 mV	$\times 100$	10 V
$1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$	1 V	$\times 10$	10 V
$1 \mathrm{M} \Omega$	5 V	x 1	5 V
$10 \mathrm{M} \Omega$	5 V	x 1	5 V
$100 \mathrm{M} \Omega$	4.5 V	x 1	4.5 V

Chapter 5 Theory of Operation
Internal DMM

Ohms Current Source

Unless otherwise noted, components in this discussion are located on the A4 circuit assembly (34970-66504). The schematics are included in Chapter 8 starting on page 234.

The ohms current source flows from the Input HI terminal to the Input LO terminal for both the 2 -wire and 4 -wire ohms functions. E ach current value is generated by forcing a stable, precise voltage across a stable resistance. The value of the current becomes part of the range gain constant stored during calibration.

The +7 V reference voltage is used to generate a stable reference current with U201A. R201 and R202 are the resistance references for the current sources as shown in the table below. The IREF current is used to produce a precise voltage drop across the $28.57 \mathrm{k} \Omega$ resistor in U 102D-4. The IREF generated using R202 produces an approximate 5 V drop across the $28.57 \mathrm{k} \Omega$ resistor. The IREF generated using R201 produces an approximate 0.5 V drop. This voltage is used to force a reference voltage across the selected current source range resistor ($5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$) by U201B. The resulting precision current flows through J FET Q202 and protection circuit Q203 to Q211, and CR202 to relay K102 where it is switched to the Input HI terminal for ohms measurements.

The protection circuits are designed to protect the ohms current source from inadvertently applied voltages in excess of $\pm 1000 \mathrm{~V}$. Protection from large positive voltages is provided by the reverse breakdown voltage of CR202. Protection from large negative voltages is provided by the sum of the collector to base breakdown voltages of Q203, Q205, Q207, and Q209. Bias for these transistors is provided by Q211 and R203 to R206 while negative over voltages are applied.

Ohms Range	Current	Open Circuit Voltage	Compliance Limit	Reference	Isource R U102D
100Ω	1 mA	9 V	2.5 V	R 202	$5 \mathrm{k} \Omega$
$1 \mathrm{k} \Omega$	1 mA	9 V	2.5 V	R 202	$5 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$100 \mu \mathrm{~A}$	9 V	4 V	R 202	$50 \mathrm{k} \Omega$
$100 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$	9 V	4 V	R 202	$500 \mathrm{k} \Omega$
$1 \mathrm{M} \Omega$	$5 \mu \mathrm{~A}$	9 V	8 V	R 202	$1 \mathrm{M} \Omega$
$10 \mathrm{M} \Omega$	500 nA	14 V	10 V	R 201	$1 \mathrm{M} \Omega$
$100 \mathrm{M} \Omega{ }^{[1]}$	$500 \mathrm{nA}{ }^{[1]}$	5 V		R 201	$1 \mathrm{M} \Omega$

[1] Measured in parallel with the internal $10 \mathrm{M} \Omega$ resistor.

Chapter 5 Theory of Operation
Internal DMM

AC Circuit

Unless otherwise noted, components in this discussion are located on the A4 circuit assembly (34970-66504). The schematics are included in Chapter 8 starting on page 234.

The multimeter uses a true RMS ac-to-dc converter to measure ac voltages and currents. The ac-to-dc converter changes the input ac voltage to a dc voltage. All voltage ranging is performed in the ac circuit so that the input to the multimeter's dc circuitry (AC_OUT) is nominally 2 Vdc for a full scale ac input. The dc amplifier is always configured for $x 1$ gain in ac functions (voltage, current, frequency, and period). Relay K104 connects the ac circuit to either the Input HI terminal or to R121, the current function voltage sense point. Note that the input to the ac circuit may contain a dc bias from the applied ac signal.

I nput coupling capaditor C301 blocks the dc portion of the input signal. Only the ac component of the input signal is measured by the multimeter. The ac circuit voltage ranging comprises two gain stages U301 and U 305/U312. The voltage gains for each stage are tabulated below.

Function	Range	Shunt Resistor	1st Stage	2nd Stage	ADC Input
ACV, Freq, or Period	100 mV		x0.2	x100	2 Vdc
	1 V		$\times 0.2$	$\times 10$	2 Vdc
	10 V		$\times 0.2$	$\times 1$	2 Vdc
	100 V		x0.002	$\times 10$	2 Vdc
	300 V		$\times 0.002$	$\times 1$	1.4 Vdc
ACI	10 mA	5.1Ω	x0.2	x100	0.2 Vdc
	100 mA	0.1Ω	$\times 0.2$	$\times 100$	1 Vdc
	1 A	0.1Ω	x0.2	$\times 100$	2 Vdc

The 1st stage is a compensated attenuator implementing a gain of x0.2 or $x 0.002$ as selected by U304A and U304D. E ach voltage range has a unique 50 kHz frequency response correction produced by a programmable variable capacitor connected across R304.

The programmable capacitance is implemented by varying the signal level across a compensating capacitor. In the $\times 0.2$ configuration, low frequency gain is set by R301, R302, and R304. The variable gain element U302/U303 essentially varies the value of C306 from 0 to 1 times its value in 256 steps. The exact gain constant is determined during the 50 kHz ac voltage range calibration procedure. In the x0.002 configuration, low frequency gain is set by R301, R302, and R303. The variable gain element U302/U303 essentially varies the value of C305 plus C306 from 0 to 1 times their value in 256 steps. The exact gain constant is determined during the 50 kHz ac voltage range calibration procedure.

The second stage is made up of two amplifiers (U305 and U312) each configured for a fixed gain of $\times 10$. Overall $2 n d$ stage gains of $\times 1, \times 10$, and $\times 100$ are produced by routing the 1st stage output either around, or through one or both amplifiers as shown in the table below.

2nd Stage Gain	U306A	U306B	U306C	U306D	U304C
$\times 1$	ON	OFF	OFF	OFF	OFF
x10	OFF	ON	OFF	ON	OFF
x100	OFF	ON	ON	OFF	ON

The output of the 2nd stage is connected to the rms-to-dc converter stage. Any residual dc offset from the amplifier stages is blocked by capacitor C316. Buffer U307 drives the input to the rms-to-dc converter as well as the frequency comparator (U310A) input. The rms-to-dc converter has two selectable averaging filters (C318 and C318 plus C321) for the analog computer circuit of U308. The two analog averaging filters together with digital filters running in the main CPU implement the three selectable ac filters: slow, medium, and fast. The faster analog filter (using C318) is used for all AC V, AC I, and frequency or period autoranging. The slower analog filter is used only with the slow and medium ac filter choices.

In frequency or period measurements, U310A generates a logic signal (FREQIN) for every input zero crossing. The ac sections FREQRNG dc output is measured directly by the main CPU's 10-bit ADC during frequency or period measurements. This lower resolution measurement is sufficient to perform voltage ranging decisions for these functions. The frequency comparator output is disabled during ac voltage and current measurements by U310B forcing U310A's input to -15 volts.

Chapter 5 Theory of Operation
Internal DMM

A-to-D Converter

U nless otherwise noted, components in this discussion are located on the A4 circuit assembly (34970-66504). The schematics are included in Chapter 8 starting on page 234.

The analog-to-digital converter (ADC) is used to change dc voltages into digital information (schematic shown on page 9-12). The circuitry consists of an integrator amplifier (U402 and U420), current steering switch U411, resistor network U102E, voltage reference U 403, ADC controller U209, and residue ADC U205.

The ADC method used is called multislopelII. It is based on patented Agilent ADC technology. Multislope III is a charge balancing continuously integrating analog-to-digital converter. The ADC charge balancing algorithm is always running, even when the multimeter is not triggered. The input voltage continuously forces charge onto the integrator capacitors C400 and C401 through U102E-R16.

Switches U 411A and U411B steer fixed positive or negative reference currents onto the integrator capacitor to cancel, or balance, the accumulated input charge. The level shifted (R403 and R406) output of the integrator is checked every 2.66μ s by the A1U209 COMP input. Logic state machines in A1U209 control the U411 current steering to continuously seek an approximate 2.5 V level on the integrator amplifier output, FLASH. If the ADC input voltage ADIN is between $\pm 15 \mathrm{~V}$, the integrator output (FLASH) will remain within the 0 V to 5 V range of the A1U205 on-chip ADC. An input greater than +15 V may cause the integrator output (U402-6) to saturate at about -18 V . An input less than -15 V may cause U 402 to saturate with an output of about +18 V . The A1U205 ADC input (FLASH) is clamped to 0 V or 5 V by R405 and CR403 to protect A1U205.

The integrator amplifier is formed by U402 and U420. Resistors R420 and R421 affect the amplifier stability. Amplifier oscillation may occur if their values are incorrect. Amplifier U420 improves the offset voltage characteristics of integrator amplifier U402.

Chapter 5 Theory of Operation Internal DMM

Each analog-to-digital conversion begins when the multimeter is triggered. The ADC starts by clearing the integrator slope count in A1U 209. At the end of the integration period, the slope count is latched. The slope count provides the most significant bits of the input voltage conversion. The least significant bits are converted by the on-chip ADC of CPU A1U205.

The instrument precision voltage reference is U403. Resistor R409 provides a stable bias current for the reference zener diode. R408 and CR 404 provide a bias to assure that the reference zener biases to +7 V during power up. IC U400A amplifies the voltage reference to +10 V while amplifier U 401 A inverts the +10 V reference to -10 V . The reference voltages force precision slope currents for the integrating ADC through U102E-R17, R18.

Chapter 5 Theory of Operation Switch Modules

Switch Modules

In general, all the switch modules share a common module control circuitry. This circuitry is described below. Each module is described in further detail on the following pages.

Switch Module	Name	Page
34901 A	20 Channel MUX with T/C Compensation	142
34902 A	16 Channel Reed MUX with T/C Compensation	144
34903 A	20 Channel Actuator	146
34904 A	4×8 Matrix Switch	147
$34905 A$	50Ω Dual 4:1 VHF MUX	148
$34906 A$	75Ω Dual 4:1 VHF MUX	148
$34908 A$	40 Channel Single-Ended MUX with T/C Compensation	149

Switch Module Control

A simplified block diagram of a typical module controller is shown below.

Chapter 5 Theory of Operation

Switch Modules

In addition to the +5 Volt power supply (Vcc) and ground, the module controller uses four lines for control and communication:

- RESET, from the Earth Referenced Logic A1U305. RESET is common to all three slots. The module controller performs a reset when this line goes high. Reset conditions vary for each plug-in.
- SRQ, to the E arth Referenced Logic A1U305. The SRQ line is a wired-OR line that can be driven by any plug-in. Consequently, any module that asserts SRQ (line low), asserts this line in all other slots and at the Earth Reference Logic.
- DATA IN, from the Floating Logic A1U205 via the opto isolator A1U 312. This line is connected in common to all three slots.
- DATA OUT, from the module controller to the Floating Logic A1U 205 via the opto isolator A1U213. This line is a wired-OR line that can be driven by any module.

The DATA IN and DATA OUT lines are optically isolated from the floating logic controller. These lines communicate with the Floating Logic using an asynchronous serial bit stream.

The serial communications use an 11 bit protocol; a start bit, 8 data bits, an attention bit, and a stop bit. The attention bit is 1 if the 8 data bits are an address/command, or 0 if the 8 data bits modify or provide data for the previously sent command.

The module controller uses the hardwired slot-ID bits to decode the serial bit stream address. When the address/command message address matches the slot-ID, the plug-in is selected and responds to the following commands. All other plug-ins will ignore the commands until a new address/command message is received.

A 12 MHz crystal, Y 101 is the clock for the module controller. The module ID is a four bit pattern set through R106, R107, R108, and R109. The Ferro-electric RAM U 150 provides data storage of the relay usage on the module (sepage 55) and the thermocouple reference junction temperature corrections (see page 112). Data in and out of U 150 is serial.

The 34901A, 34902A, and 34908A each have two onboard, solid state temperature sensors, U151 and U152, physically located near the isothermal block at the input connections. The temperature sensors are used as the thermocouple temperature reference.

Chapter 5 Theory of Operation Switch Modules

U 101 controls the relays on the module using an 8-bit data bus and three control lines. The data lines are latched and applied to the relay drivers.

U 101 enters a low-power idle mode when inactive. U101 responds when a command is received or when a scheduled reference junction temperature measurement is taken.

The relays use a buffered +5 Volt power supply. U 101 supplies two drive enable lines (DR_EN and +5NL_EN) that connect Vcc from the digital bus with the relay drive lines through Q101 (+5 R or +5 NL). To minimize the current through DGND caused by static discharge, the ground return (ZGND) is isolated from the backplane ground through a bead L102.

Relay Drivers

Two types of single-coil relays are used on the switch modules:
latching and non-latching. Typical driver configurations areshown below.

Chapter 5 Theory of Operation

Switch Modules

The non-latching relay contacts are in the set position (closed) when current flows through the coil. When the current is removed, the relay resets (opens). The positive side of the relay coil is connected to +5 NL . The negative side of the relay coil is connected to ZGND through a single NPN transistor. The transistor and +5NL must be on for the relay to stay in the set position.

The polarity of the current flow through the latching relay coil determines the set (closed) or reset (open) position of the relay contacts. Latching relays are driven by row and column latches or complimentary transistor pairs.

To set a relay (close a channel) in the row column driver circuitry, the appropriate row driver PNP transistor is turned on connecting the $+5 R$ supply to the positive side of several relay coils and ZGND is applied to the negative side of the desired relay coil through a column driver NPN transistor. To reset a relay, ZGND is applied through an NPN row driver transistor and +5R through a PNP column driver.

Tree latching relays are driven by complimentary transistor pairs that steer the current through the relay coil.

The $+5 R$ supply is only enabled while the relay changes state. The table below shows the times required for the relays to change state.

Switch Module	Open	Close
34901 A	6 ms	6 ms
34902 A	0.40 ms	1.25 ms
34903 A	6 ms	6 ms
34904 A	6 ms	6 ms
$34905 \mathrm{~A} / 06 \mathrm{~A}$	10 ms	15 ms
34908 A	6 ms	6 ms

Chapter 5 Theory of Operation

Switch Modules

34901A

Components in this discussion are located on the A1 circuit assembly (34901-66501). The schematics are included in Chapter 8 starting on page 239.

The control circuitry has four groupings of latches, relay drivers and relays. The three control lines (SEL_A, SEL_B, and SEL_C) from the module controller are divided into five control lines by the binary to octal converter U109.

The row latch, U102, and column latches, U103 and U 104, control the relays. The row drivers are divided into four groups of set and reset drivers. Each group of row drivers controls five relays. The column drivers operate as a pair. There are ten column drivers each controlling two relays. The analog bus backplane relays are non-latching.

Chapter 5 Theory of Operation

Switch Modules

The 20 channels are divided into two banks. The banks are combined by closing K 422 for voltage and 2-wire Ohms switching. When K422 is open, the banks are electrically independent of each other and this configuration is used for 4 -wire Ohms multiplexing where the Ohms current sources are connected to channels 1 through 10 and the sense is obtained from channels 11 through 20. K421 and K423 control the connection to the analog bus for measurements using the Internal DMM.

The current measurement channels are selected by relay K 522. Relays K523 and K524 short the inputs when a channel is not selected. Relay K521 makes the connection to the analog bus for measurement by the Internal DMM.

Chapter 5 Theory of Operation Switch Modules

34902A

Components in this discussion are located on the A1 circuit assembly (34902-66501). The schematics areincluded in Chapter 8 starting on page 245 .

The control circuitry has of two groupings of latches, relay drivers and relays. The 16 voltage and resistance measurement channels are directly driven. Tree switching controls the 2-wire/4-wire Ohms operation and connections to the analog bus.

The reed relays are non-latching and the relay driver and $+5 R$ is applied while a channel is closed.

Chapter 5 Theory of Operation

Switch Modules

The 16 channels are divided into two banks. The banks are combined by closing K 327 for voltage and 2-wire Ohms switching. When K327 is open, the banks are electrically independent of each other and this configuration is used for 4 -wire Ohms multiplexing where the Ohms current source is connected to channels 1 through 8 and the sense is obtained from channels 9 through 16. Relays K 326 and K 328 control the connection to the analog bus for measurements using the internal DMM.

Chapter 5 Theory of Operation

Switch Modules

34903A

Components in this discussion are located on the A1 circuit assembly (34903-66501). The schematics are included in Chapter 8 starting on page 250.

The control circuitry has two grouping of latches, relay drivers and relays. The 20 channels are, for control purposes, arranged into 8 rows by 10 columns.

The row latch, U102, and column latches, U103 and U 104, control the relays. The row drivers are divided into four groups of set and reset drivers. Each group of row drivers controls five relays. The column drivers operate as a pair. There are ten column drivers each controlling two relays.

The 34903A provides 20 channels of F orm C switching.

Chapter 5 Theory of Operation Switch Modules

34904A

Components in this discussion are located on the A1 circuit assembly (34904-66501). The schematics areincluded in Chapter 8 starting on page 254.

The control circuitry has four groupings of latches, relay drivers and relays divided into 4 rows by 8 columns.

The row latch, U102, and column latch U103, control the relays. The row drivers are divided into four groups of set and reset drivers. Each group of row drivers controls eight relays. The column drivers operate as a pair. There are eight column drivers each controlling four relays. The relays are arranged in 4 rows by 8 columns.

Chapter 5 Theory of Operation Switch Modules

34905A/34906A

Components in this discussion are located on the A1 circuit assembly (34905-66501 or 34906-66501). The schematics areincluded in Chapter 8 starting on page 258.

The control circuitry has of two grouping of buffers, relay drivers and relays, one for each multiplexer bank.

Bank1 latch, U 102, and Bank2 Iatch, U103, control the relays. The bank drivers are divided into six groups of set and reset drivers. Each set and reset driver controls one relay. The column drivers operate as a pair. There are six column drivers each controlling a relay. The relays are arranged into two independent banks:

Chapter 5 Theory of Operation Switch Modules

34908A

Components in this discussion are located on the A1 circuit assembly (34908-66501). The schematics areincluded in Chapter 8 starting on page 267.

The control circuitry has three grouping of latches, relay drivers and relays. The 40 voltage and resistance measurement channels are, for control purposes, arranged into 8 rows by 10 columns. Tree switching controls bank selection and connections to the analog bus.

The row latch, U102, and column latches, U103 and U 104, control the relays. The row drivers are divided into four groups of set and reset drivers. Each group of row drivers controls five relays. The column drivers operate as a pair. There are ten column drivers each controlling two relays. The analog bus backplane relays are non-latching.

Chapter 5 Theory of Operation Switch Modules

A single relay is used to switch two input channels. The choice of which channel is connected to the common is performed by relay K 422. Channels are paired 20 channels apart (Ch 1 with Ch 21, Ch 2 with Ch 22, etc.) Relay K 421 connects the common to the backplane analog bus for use with the internal DMM.

Multifunction Module

The 34907A Multifunction module contains two 8-bit digital input/ output ports, a totalizer input, and two 16-bit analog outputs.

Multifunction Control

Components in this discussion are located on the A1 circuit assembly (34907-66501). The schematics are included in Chapter 8 starting on page 261.

A simplified block of the module control circuit is shown below.

Chapter 5 Theory of Operation

Multifunction Module

In addition to the +5 Volt power supply (Vcc) and ground, the module controller uses four lines for control and communication:

- RESET, from the Earth Referenced Logic A1U305. RESET is common to all three slots. The module controller performs a reset when this line goes high. Reset conditions vary for each plug-in.
- SRQ, to the E arth Referenced Logic A1U305. The SRQ line is a wired-OR line that can be driven by any plug-in. Consequently, any module that asserts SRQ (line low), asserts this line in all other slots and at the Earth Reference Logic.
- DATA IN, from the Floating Logic A1U205 via the opto isolator A1U 312. This line is connected in common to all three slots.
- DATA OUT, from the module controller to the Floating Logic A1U 205 via the opto isolator A1U213. This line is a wired-OR line that can be driven by any module.

The DATA IN and DATA OUT lines are optically isolated from the floating logic controller. These lines communicate with the Floating Logic using an asynchronous serial bit stream.

The serial communications use an 11 bit protocol; a start bit, 8 data bits, an attention bit, and a stop bit. The attention bit is 1 if the 8 data bits are an address/command, or 0 if the 8 data bits modify or provide data for the previously sent command.

The module controller uses the hardwired slot-ID bits to decode the serial bit stream address. When the address/command message address matches the slot-ID, the plug-in is selected and responds to the following commands. All other plug-ins will ignore the commands until a new address/command message is received.

A 12 MHz crystal, Y 101, is the clock for the module controller. The module ID is a four bit pattern set through RP102. The Ferroelectric RAM U102 provides data storage of the calibration constants for the analog output channels. Data in and out of $U 102$ is serial.

8 data lines, connected to U101 port 1, are used by the digital input and output ports. One of the data lines is used to send serial data to the analog output channels. The totalizer edge count is controlled by U 101 P0.6 and read at U101 P3.4.

U101 enters a low-power idle mode when inactive. U101 responds when a command is received or when a scheduled alarm scan is needed.

Chapter 5 Theory of Operation Multifunction Module

Totalizer

Components in this discussion are located on the A1 circuit assembly (34907-66501). The schematics areincluded in Chapter 8 starting on page 261.

A simplified block diagram of the totalizer input is shown below.

The totalizer counts signals connected to the COUNT+ and COUNTinputs. Two op-amps, U108A and U108B, are used for input signal conditioning. Comparator U109 determines the signal trigger levels based upon the setting of the jumper at P102. With the P102 jumper in the TTL position, the totalizer counts pulses with TTL trigger levels. With the jumper at P102 in the AC position the trigger level is at zero.

The GATE and GATE* input signals control when counting occurs. If no signal is connected, the totalizer counts any changing signal on the inputs. A TTL low on the GATE input or a TTL high on GATE* input will halt counting.

Count edge selection is controlled from a U101 port bit (P0.6) through the exclusive OR gate U111. When the P0.6 signal is low, the count increments on the rising edge of the input signal. When the P 0.6 signal is high, the count increments on the falling edge of the input signal.

Chapter 5 Theory of Operation Multifunction Module

Analog Output

Components in this discussion are located on the A1 circuit assembly (34907-66501). The schematics are included in Chapter 8 starting on page 261.

A simplified block diagram of the analog output channels is shown below.

Communication with each DAC (U503 and U504) is via three lines: SERSTB, DACCLK, and SERDAT. Each DAC has a voltage output of $\pm 3 \mathrm{~V}$. U505 and U506 amplify this voltage to the $\pm 12 \mathrm{~V}$ output.

A DC/DC converter is used to provide the $\pm 15 \mathrm{~V}$ supplies to $U 505$ and U 506. The $\pm 15 \mathrm{~V}$ supplies also are used at the input of the totalizer. U502 provides the -5 V supply used by the DACs.

A line from U101 P0.4 is used to control the output of U510. After a reset or power-up, U510 is held in the shutdown state. U101 turns on the DC/DC converter in response to commands from the main controller. The main controller paces the turn on of the DC/DC converters to ensure that if multiple modules are installed, the backplane power supply is not pulled down by the in-rush current of the DC/DC converters.

Chapter 5 Theory of Operation Multifunction Module

Digital I/O

Components in this discussion are located on the A1 circuit assembly (34907-66501). The schematics are included in Chapter 8 starting on page 261.

A simplified diagram of a digital I/O channel is shown below.

Two stages of latches on the outputs and one set of latches on the inputs provide synchronous 16 bit writes and reads of the digital ports.

F or digital output, data is written to the upper and lower bytes (U201 and U202) separately, then latched into the output latches U203 and U204 simultaneously. On a digital input data is latched into the input latches U105 and U106 simultaneously.

MOSFETs are used to provide the low level output, and 74HC240's are used to provide the high level output.

During an output low, a logic high level is applied to the gate of the MOSFET causing it to conduct and creating a low resistance path from the data line to ZGND. In this state the MOSFET is capable of sinking an externally supplied current of up to 400 mA . The blocking diodes, CR301-CR308 and CR401-CR408 prevent any current from sinking into the 74HC240's.

During an output high, a logic low level is applied to the gate of the MOSFET turning it off and presenting a high resistance between the data line and ground.

Chapter 5 Theory of Operation
Multifunction Module

The 74HC240's, U205 and U206, provide the output high drive current necessary to maintain a TTL high output level ($\geq 2.4 \mathrm{Vdc}$) under load.

At instrument turn-on, following a reset, and whenever the data lines are being read, the MOSFETs are in the passive high state, and the high output drivers are disabled. The resistor connected between the MOSFET's gate and ZGND holds the gate near ground potential when the module is initially turned-on to ensure that the MOSFET is in the passive high state.

The comparators U301, U302, U401 and U402 maintain correct TTL high and low levels by shifting the voltages from the input to compensate for the forward voltage drop of the blocking diode. A reference voltage of +2.1 Vdc (TTL_REF) is applied to the inverting input of the comparator. When the input voltage is in the range of 0 Vdc to +4.3 Vdc the blocking diode is forward biased and its forward voltage drop is added to the applied voltage. For example, when 0 Vdc is applied to the data line, +0.7 Vdc is present on the non-inverting input of the comparator and the comparator output is low. When the input signal level is above 1.4 Vdc , a voltage greater then +2.1 Vdc is applied to the non-inverting input of the comparator causing its output to go high. When the input signal is less than 1.4 Vdc , a voltage less than 2.1 Vdc is applied to the comparator's non-inverting input causing its output to go low. This ensures an input voltage $<1.4 \mathrm{Vdc}$ is interpreted as a TTL low level and an input $>1.4 \mathrm{Vdc}$ is interpreted as a TTL high level.

The pull-up resistor (connected to the comparator's non-inverting input) allows external ground connections and open circuits to be detected. When the data line is grounded, the blocking diode is forward biased applying a +0.7 Vdc level to the comparator, a TTL low. When the data line is allowed to float, the non-inverting input of the comparator pulls up to +5 Vdc , a TTL high.

The blocking diode on the output is used for circuit protection. The di ode reverse biases when the applied voltage exceeds +4.3 Vdc preventing externally supplied current from being injected into the module's +5 V supply line.

The MOSFETs have a built in zener diode that conducts at any voltage of approximately 75 Vdc or greater. The zener diode provides protection from external over voltage situations including static electricity.

Service

Service

This chapter discusses the procedures involved for returning a failed instrument to Agilent for service or repair. Subjects covered include the following:

- Operating Checklist, on page 159
- Types of Service Available, on page 160
- Repackaging for Shipment, on page 161
- Cleaning, on page 161
- Electrostatic Discharge (ESD) Precautions, on page 162
- Surface Mount Repair, on page 162
- To Replace the Power-LineF use, on page 163 (also depicted on page 42)
- Troubleshooting Hints, on page 163
- Self-Test Procedures, on page 167
- Battery Check and Replacement, on page 172
- Disassembly, on page 174

Operating Checklist

Before returning your instrument to Agilent Technologies for service or repair check the following items:

Is the instrument inoperative?

- Verify that the ac power cord is connected to the instrument.
- Verify that the front-panel On/Standby switch has been pushed.
- Verify that the power-line fuse is installed and not open (see page 42). The instrument is shipped from thefactory with a 500 mAT , 250 V fuse. This is the correct fusefor all line vol tages.
- Verify the power-line voltage setting. Se "If the Instrument Does Not Turn On" on page 42.

Does the instrument fail self-test?

- Verify that the correct power-line voltage is selected. Se "If the Instrument Does Not Turn On" on page 42.
- Remove all input connections to the instrument. Errors may beinduced by ac signals present on the input wiring during a self-test. Long test leads can act as an antenna causing pick-up of ac signals.

Is the Current measurement function inoperative?

- Verify the input protection fuses on the 34901A Multiplexer Module. If necessary, replace with a $1.5 \mathrm{~A}, 250 \mathrm{~V}$ NTD fuse.

Note: The Current input is only available on channels 21 and 22 of the 34901A module

Types of Service Available

If your instrument or plug-in module fails during the warranty period (within three years of original purchase), Agilent will replace or repair it free of charge. After your warranty expires, Agilent will repair or replace it at a competitive price. The standard repair process is "whole unit exchange". The replacement units are fully refurbished and are shipped with new calibration certificates.

Standard Repair Service (worldwide)

Contact your nearest Agilent Technologies Service Center. They will arrange to have your instrument repaired or replaced.

Agilent Express Unit Exchange (U.S.A. only)

You will receive a refurbished, calibrated replacement Agilent 34970A in 1 to 4 days.

Note: Agilent Express applies to the 34970A mainframe only. Plug-in modules arenot supported as exchangeassemblies.

8

1 Call 1-877-447-7278 and ask for "Agilent Express".

- You will be asked for your serial number, shipping address, and a credit card number to guarantee the return of your failed unit.
- When exchanging the 34970A, do not ship plug-in modules with your instrument. Remove all plug-in modules and customer wiring before shipping to Agilent.
- If you do not return your failed unit within 15 business days, your credit card will be billed for the cost of a new 34970A.

2 Agilent will send a replacement 34970A directly to you.

- The replacement unit will come with instructions for returning your failed unit. Please retain the shipping carton and packing materials to return the failed unit to Agilent. If you have questions regarding these instructions, please call 1-877-447-7278.
- The replacement unit will have a different serial number than your failed unit. If you need to track your original serial number, a blank label will be shipped with the replacement unit to record your original serial number.

Repackaging for Shipment

If the unit is to be shipped to Agilent for service or repair, be sure to:

- Attach a tag to the unit identifying the owner and indicating the required service or repair. Include the instrument model number and your full serial number.
- Place the unit in its original container with appropriate packaging material.
- Secure the container with strong tape or metal bands.

If the original shipping container is not available, place your unit in a container which will ensure at least 4 inches of compressible packaging material around all sides for the instrument. Use static-free packaging materials to avoid additional damage to your unit.

Agilent suggests that you always insureshipments.

Cleaning

Clean the outside of the instrument and plug-in modules with a soft, lint-free, slightly dampened cloth. Do not use detergent. Disassembly is not required or recommended for cleaning.

Chapter 6 Service Electrostatic Discharge (ESD) Precautions

Electrostatic Discharge (ESD) Precautions

Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damage can occur at electrostatic discharge voltages as low as 50 volts.

The following guidelines will help prevent ESD damage when servicing the instrument or any electronic device.

- Disassemble instruments only in a static-free work area.
- Use a conductive work area to dissipate static charge.
- Use a conductive wrist strap to dissipate static charge accumulation.
- Minimize handling.
- Keep replacement parts in original static-free packaging.
- Remove all plastic, styrofoam, vinyl, paper, and other static-generating materials from the immediate work area.
- Use only anti-static sol der suckers.

WARNING	SHOCK HAZARD. Only service-trained personnel who areaware of the hazards invol ved should remove theinstrument covers.
	To avoid electrical shock and personal injury, make sure to
disconnect the power cord from the instrument before	
removing the covers.	

Surface M ount Repair

Surface mount components should only be removed using soldering irons or desol dering stations expressly designed for surface mount components. Use of conventional solder removal equipment will almost al ways result in permanent damage to the printed circuit board and will void your Agilent factory warranty.

Chapter 6 Service

To Replace the Power-Line Fuse

To Replace the Power-Line F use

The power-line fuse is located on the rear panel of the instrument, near the power line connector. A procedure to replace the fuse is given on page 42 . Use a $500 \mathrm{mAT}, 250 \mathrm{~V}$ fuse for all power line settings.

Troubleshooting Hints

This section provides a brief check list of common failures. Before troubleshooting or repairing the instrument, make sure the failure is in the instrument rather than any external connections. Also make sure that the instrument is accurately calibrated within the last year (sepage 63). The instrument's circuits allow troubleshooting and repair with basic equipment such as a 61/2-digit multimeter.

Unit is Inoperative

- Verify that the ac power cord is connected to the instrument.
- Verify that the front-panel On/Standby switch has been pushed.
- Verify that the power-line fuse is installed and not open (see page 42). The instrument is shipped from thefactory with a 500 mAT , 250 V fuse. This is the correct fusefor all line vol tages.
- Verify the power-line voltage setting. See"If the Instrument Does Not Turn On" on page 42.
- Remove all plug-in modules to verify that a plug-in module is not causing the failure.

Chapter 6 Service
Troubleshooting Hints

Unit Reports Error 705

This error may be produced if you accidentally turn off power to the unit during a calibration or while changing a non-volatile state of the instrument. Recalibration or resetting the state should dear the error. If the error persists, a hardware failure may have occurred.

I solating to an Assembly

- Remove all plug-in modules to isolate between the instrument and the plug-in modules.
- Listen for a beep when you press the On/Standby switch. The main controller can operate the beeper even with a display failure.
- Listen for the fan when you press the On/Standby switch. F an operation indicates some operation of the main controller and power supplies.
- Try to operate the instrument from a remote interface. If remote operations are normal, the display should be replaced or repaired.
- Isolate the internal DMM by removing it. The instrument should operate and pass self-test without the internal DMM installed.
Disassembly procedures start on page 174.

Unit Fails Self-Test

- Verify that the correct power-line voltage setting is selected.
- Remove all plug-in modules and run self-test again. If the instrument does not show a failure, replace or troubleshoot the plug-in module.
- To isolate the internal DMM, disassemble the instrument and remove the internal DMM. Disassembly procedures start on page 174. Run self-test again. If the self-test passes, troubleshoot or replace the Internal DMM. If the self-test fails, troubleshoot or replace the 34970A.

Chapter 6 Service Troubleshooting Hints

Power Supplies

Verify the power supplies generated on the 34970-66501 circuit board.
The front panel filament voltage, +5 V backplane and +5 V fan are switched by the On/Standby switch. All other power supplies operate whenever the AC power cord is connected.

Warning

- Exposed Mains
- Do Not Touch

To check the power supplies, remove the instrument cover as shown on page 174. The power supplies can be checked from the bottom of the instrument as shown below. Be sure to use the correct ground point when checking the supplies.

Continued on the next page..

Chapter 6 Service
Troubleshooting Hints

Power Supplies (continued)

The A1 power supplies are tabulated below.

Power Supply	Minimum	Maximum	Switched
+5 Earth Ref.	4.75 V	5.25 V	No
+5 Backplane and Fan	4.75 V	5.25 V	Yes
+5 Floating	4.75 V	5.25 V	No
+18 Floating	17.6 V	19.9 V	No
-18 Floating	-19.0 V	-16.8 V	No
6 Vrms Filament			Yes

- Check that the input to the supply voltage regulator is at least 1 V greater than its output.
- Circuit failures can cause heavy supply loads which may pull down the regulator output voltage.
- Always check that the power supplies are free of ac oscillations using an oscilloscope.
- All plug-in modules use the +5 V backplane supply. Some plug-in modules generate their own local power supplies.

Chapter 6 Service

Self-Test Procedures

Power-On Self-Test

E ach time the instrument is powered on, a small set of self-tests are performed. These tests check that the minimum set of logic and measurement hardware are functioning properly. Any plug-in modules installed are verified for two-way communication with the main controller.

Complete Self-Test

H old down any front panel key for 5 seconds while turning on the power to perform a complete self-test. The instrument beeps when the test starts. If all self-tests pass the display shows PASS for five seconds and the instrument returns to the last measurement function.

Plug-in Module Self-Test

No user self-test exists for the plug-in modules. The plug-in modules perform their own self-test when power is applied. Additionally, the mainframe checks two-way communication with all plug-in modules at power on.

E ach plug-in module also performs error checking at regular intervals during operation and any errors detected are reported via the status system to the main controller.

Self-Tests

A complete self-test performs the following tests. A failing test is indicated by the test number and description in the display.

Front panel not responding The main CPU A1U205 attempts to establish serial communications with the front panel processor A2U1. During this test, A2U1 turns on all display segments. Communication must function in both directions for this test to pass. If this error is detected during power-up self-test, the instrument will beep. This error is only readable from the remote interface.
RAM read/write failed This test writes and reads a 55_{h} and $A A_{h}$ checkerboard pattern to each address of RAM. Any incorrect readback will cause a test failure. This error is only readable from the remote interface.

A / D sync stuck The main CPU issues an A/D sync pulse to A1U 209 and A1U 205 to latch the value in the ADC slope counters. A failure is detected when a sync interrupt is not recognized and a subsequent time-out occurs.
A / D slope convergence failed The input amplifier is configured to the measure zero (MZ) state in the 10 V range. This test checks whether the ADC integrator produces nominally the same number of positive and negative slope decisions ($\pm 10 \%$) during a 20 ms interval.
Cannot calibrate rundown gain This test checks the nominal gain between the integrating ADC and the A1U205 on-chip ADC. This error is reported if the procedure can not run to completion due to a hardware failure.

Rundown gain out of range This test checks the nominal gain between the integrating ADC and the A1U205 on-chip ADC. The nominal gain is check to $\pm 10 \%$ tolerance.

R undown too noisy This test checks the gain repeatability between the integrating ADC and the A1U205 on-chip ADC. The gain test (606) is performed eight times. Gain noise must be less than ± 64 LSB's of the A1U205 on-chip ADC.

Serial configuration readback failed This test re-sends the last 9 byte serial configuration data to all the serial path. The data is then clocked back into A1U209 and compared against the original 9 bytes sent. A failure occurs if the data do not match.
DC gain x1 failed This test configures for the 10 V range. The dc amplifier gain is set to X1. The measure customer (MC) input is connected to the internal TSE NSE source which produces 0.6 volts. A 20 ms ADC measurement is performed and checked against a limit of $0.6 \mathrm{~V} \pm 0.3 \mathrm{~V}$.

610 DC gain $\mathbf{x 1 0}$ failed This test configures for the 1 V range. The dc amplifier gain is set to X10. The measure customer (MC) input is connected to the internal TSE NSE source which produces 0.6 volts. A 20 ms ADC measurement is performed and checked against a limit of $0.6 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
DC gain $\mathbf{x 1 0 0}$ failed This test configures for the 100 mV range. The dc amplifier gain is set to X100. The measure customer (MC) input is connected to the internal TSENSE source which produces 0.6 volts. A 20 ms ADC measurement is performed and checked for a + overload response.
Ohms 500 nA source failed This test configures to the 10 V dc range with the internal 10 M 100:1 divider A4U 102 connected across the input. the 500 nA Ohms current source is connected to produce a nominal 5 V signal. A 20 ms ADC measurement is performed and the result is checked against a limit of $5 \mathrm{~V} \pm 1 \mathrm{~V}$.
Ohms $\mathbf{5} \mu \mathbf{A}$ source failed This test configures the 10 V range with the internal 10 M 100:1 divider A4U 102 connected across the input. The $5 \mu \mathrm{~A}$ current source is connected. The compliance limit of the current source is measured. A 20 ms ADC measurement is performed and the result is checked against a limit of $7.5 \mathrm{~V} \pm 3 \mathrm{~V}$.
DC 300V zero failed This test configures the 300 V dc range with no input applied. A 20 ms ADC measurement is performed and the result is checked against a limit of $0 \mathrm{~V} \pm 5 \mathrm{mV}$.

Ohms $10 \mu \mathbf{A}$ source failed This test configures the 10 V range with the internal internal 10 M 100:1 divider A4U 102 connected across the input. The $10 \mu \mathrm{~A}$ current source is connected. A 20 ms ADC measurement is performed and the result is checked against a limit of $7.5 \mathrm{~V} \pm 3 \mathrm{~V}$.
DC current sense failed This test configures the 1 A dc rage and function. A 20 ms ADC measurement is performed and the result is checked against a limit of $0 \mathrm{~A} \pm 5 \mathrm{~A}$. This test confirms that the dc current sense path is functional.
Ohms $\mathbf{1 0 0} \mu \mathbf{A}$ source failed This test configures the 10 V range with the internal 10 M 100:1 divider A4U 102 connected across the input. The $100 \mu \mathrm{~A}$ current source is connected. The compliance limit of the current source is measured. A 20 ms ADC measurement is performed and the result is checked against a limit of $5 \mathrm{~V} \pm 1 \mathrm{~V}$.
DC high voltage attenuator This test configures to the 300 Vdc range. the 500 nA ohms current source is connected to produce a nominal 5 V signal. A 20 ms ADC measurement is performed and the result is checked against a limit of -10 mV to 70 mV at the output of the rms-to-dc converter.

Ohms 1 mA source failed This test configures the 10 V range with the internal 10 M 100:1 divider A4U 102 connected across the input. The 1 mA current source is connected. A 20 ms ADC measurement is performed and the result is checked against a limit of $7 \mathrm{~V} \pm 3.5 \mathrm{~V}$.
AC rms zero failed This test configures to the 100 mV ac range with the ac input grounded through A4K 103. The internal residual noise of the ac section is measured and checked against a limit of -10 mV to 70 mV at the output of the rms-to-dc converter.
AC rms full scale failed This test configures for the 100 mV ac range. The 1 mA ohms current source is switched on the charge the ac input capacitor A4C301. This produces a pulse on the output of the rms-to-dc converter which is sampled 100 ms after the current is applied. A 20 ms A/D measurement is performed and checked against a limit of $10 \mathrm{~V} \pm 8.5 \mathrm{~V}$ into the ADC .

Frequency counter failed This test configures for the 100 mV ac range. This test immediately follows test 621. With A4C301 holding charge from test 621 the ac input is now switched to ground through A4K 103. This produces a positive pulse on the input to the frequency comparator A4U310. While C301 discharges, the ENAB FREQ bit is toggled four times to produce a frequency input to the counter logic in A1U 205. A failure occurs if the counter can not measure the frequency input.

623 Cannot calibrate precharge This test configures to the 100 V dc range with no input. The ADC is configured for 200 ms measurements. The A1U205 pulse width modulated (PWM) DAC output (C224) is set to about 4 volts. A reading is taken in with A4U101 in the MC state. A second reading is taken in the PRE state. The precharge amplifier voltage offset is calculated. The A1U 205 DAC output is set to about 1.5 volts and the precharge offset is measured again. The gain of the offset adjustment is calculated. This test assures a precharge amplifier offset is achievable.
$624 \quad$ Unable to sense line frequency This test checks that the LSENSE logic input to A1U205 is toggling. If no logic input is detected, the meter will assume a 50 Hz line operation for all future measurements.

I/O processor did not respond This test checks that communications can be established between A1U205 and A1U305 through the optically isolated (A1U213 and A1U214) serial data link. F ailure to establish communication in either direction will generate an error. If this condition is detected at power-on self-test, the instrument will beep and the error annunciator will be on.

I/O processor failed self-test A failure occurred when the earth referenced processor, AU305, executed an internal RAM test.

Chapter 6 Service

Battery Check and Replacement

The internal battery, A1BT101, provides power to the internal real-time clock, stored states, and reading storage memory whenever ac line power is removed.

Note: Theinternal battery state does not affect the calibration memory.
The battery has an expected life of approximately 4 years. Battery life will be reduced if the instrument is stored for prolonged periods at temperatures above $40^{\circ} \mathrm{C}$ with the ac power removed. The battery is not used whenever the ac line power is applied to the instrument.

The internal battery may be monitored to verify operation as described below. A low battery will typically give errors when ac line power is removed and then re-applied. Any of the following errors may indicate a low battery:

201, "M emory lost: stored state"
202, "Memory lost: power-on state"
203, "Memory lost: stored readings"
204, "Memory lost: time and date"

(NL)

Batterij niet weggooien, maar inleveren als KCA.
Properly dispose of lithium battery.

Chapter 6 Service

To Verify the Battery

1 Remove AC line power (this also provides a load on A1BT101).
2 Remove the cover (se page 174).
3 Measure the battery voltage as shown. Replace the battery if the voltage is below 2.7 V .

To Replace the Battery

1 Remove AC line power.
2 Remove the cover (see page 174). If installed, remove the Internal DMM (A4) assembly (se page 176).

3 Turn the instrument over and unsolder the three battery terminals from the bottom of the circuit board. Use proper through-hole soldering techniques and equipment. Remove the battery and dispose of properly.
4 Install, solder, and verify the new battery.

Chapter 6 Service Disassembly

Disassembly

The following tools are recommended for disassembly.

- T15 Tor ${ }^{\circledR}$ driver (all screws)
- 11 mm nut driver (front-panel disassembly)
- 5 mm nut driver (rear-panel connectors)

Tighten the fan screws to a maximum of $6 \mathrm{in} / \mathrm{lbs}$ (0.68 newton/meter).

WARNING SHOCK HAZARD. Only service-trained personnel who are aware of the hazards invol ved should remove the instrument covers. Dangerous voltages may be encountered with the instrument covers removed.

CAUTION To prevent damage to thefan, do not over tighten thefan screws.

Chapter 6 Service
Disassembly

General Disassembly

Chapter 6 Service
Disassembly

Internal DMM Disassembly

Front-Panel Disassembly

(3)

Maximum Torque:
$6 \mathrm{in} / \mathrm{lbs}(0.68 \mathrm{n} / \mathrm{m})$

Note: When reassembling thefront pand, be sure to routethefront-pand cableas shown above. Do not allow the front-panel cableto touch thedigital ribbon cable

Chapter 6 Service Disassembly

Additional Chassis Disassembly

(2)

Chapter 6 Service
Disassembly

Plug-In Module Disassembly

Replaceable Parts

Replaceable Parts

This chapter contains information ordering replacement parts for your instrument. The parts lists are divided into the following groups.

- 34970A Mainframe, on page 183
- 34970-66501 Main PC Assembly (A1), on page 184
- 34970-66502 Front-Panel and K eyboard PC Assembly (A2), on page 189
- 34970-66503 Backplane PC Assembly (A3), on page 190
- 34970-66504 Internal DMM PC Assembly (A4), on page 191
- 34901A 20-Channel Multiplexer, on page 196
- 34902A 16-Channel Multiplexer, on page 200
- 34903A 20-Channel Actuator, on page202
- 34904A 4x8 Matrix, on page 204
- 34905A/34906A RF Multiplexer, on page 207
- 34907A Multifunction Module, on page 209
- 34908A 40-Channel Multiplexer, on page 213
- Manufacturer's List, on page216

Parts are listed in al phanumeric order according to their schematic reference designators. The parts lists include a brief description of the part with applicable Agilent part numbers and manufacturer part number.

To Order Replaceable Parts

You can order replaceable parts from Agilent using the Agilent part number or directly from the manufacturer using the manufacturer's part number. Note that not all parts listed in this chapter are available as field-replaceable parts. To order replaceable parts from Agilent, do the following:

1 Contact your nearest Agilent Sales Office or Service Center.
2 Identify the parts by the part number shown in the replaceable parts list. Note that not all parts are directly available from Agilent; you may have to order certain parts from the spedified manufacturer.

3 Provide the instrument model number and serial number.

Chapter 7 Replaceable Parts

 34970A Mainframe
34970A Mainframe

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
A1	34970-66501	1	PCA-DIGITAL BD	02362	34970-66501
A2	34970-66502	1	PCA-DISPLAY BD	02362	34970-66502
A3	34970-66503	1	PCA-BACKPLANE BD	02362	34970-66503
A4	34970-66504	1	PCA-DMM BD	02362	34970-66504
CBL1	34970-61606	1	CABLE, K-TYPE TC, SCRWDRVR	02362	34970-61606
CBL2	RS232-61601	1	CABLE, RS232, 9 PIN	02362	RS232-61601
CBL3	8120-1378	1	CBL-U.S.	04940	07913-008GY
CVR1	34970-84101	1	COVER-SHEET METAL	02361	34970-84101
FRM1	34970-80101	1	CHASSIS	02361	34970-80101
HDW1	0535-0154	1	NUT HEX 11MM X2T	11239	37689
HDW2	3050-1941	1	WASHER-FL NM 7/16 IN . $353-\mathrm{IN}$-ID	05227	.593+-005X.353+-005X.032+-003
MNL1	34970-90101	1	MANUAL SET	02362	34970-90101
MP1	34401-45011	1	HANDLE-FRONT	02362	34401-45011
MP2	34401-86010	1	KIT-BUMPERS/COVER	02362	34401-86010
MP3	34970-00101	1	CARD CAGE, LEFT	02362	34970-00101
MP4	34970-00102	1	CARD CAGE, RIGHT	02362	34970-00102
MP5	34970-40201	1	FRNT PANEL ASSY	02362	34970-40201
MP6	34970-44111	2	COVER PLATE, PLASTIC	02362	34970-44111
MP7	34970-49321	1	WINDOW/FRONT	02362	34970-49321
MP8	34970-68501	1	FAN	02362	34970-68501
MP9	34970-86201	1	PWR MOD W/FUSE	02362	34970-86201
MP10	34970-87401	1	KNOB	02362	34970-87401
MP11	34970-88001	1	KEYPAD	02362	34970-88001
MP12	34970-88301	1	BEZEL-REAR, MLD	02362	34970-88301
SCW1-SCW7	0515-0433	7	SCRPHM4.0X08TXSC	02361	0515-0433
SCW8-SCW9	0624-0751	2	SCR 6-19X1/2TORX	05610	225-23290-890-04
SCW10	0624-0078	1	GROUND SCREW 6-32.375-IN-LGPOZI	05525	0624-0078
SHD1	34970-00601	1	SHIELD-XFMR	02361	34970-00601
SHD2	34970-00602	1	SHIELD-AC LINE	02361	34970-00602
SHD3	34970-00603	1	SHIELD-DMM	02362	34970-00603
T1	9100-5608	1	XFMR-PWR 100/120/220/240V	02859	14-7522

34970-66501 Main PC Assembly (A1)

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
BT101	1420-0860	1	BATTERY 3V 850A-HR LI MANGANESE DIOXIDE	07371	CR14250SE-FT1
C101	0180-4435	3	CAP-FXD 2200uF +-20\% 25 V AL-ELCTLT	06360	KME25VB222M16X25MCV
C102	0180-4558	1	CAP-FXD 33uF +-20\% 20 V TA	12340	T491D336M020AS
C103	0160-7798	39	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C104	0180-4435		CAP-FXD 2200uF +-20\% 25 V AL-ELCTLT	06360	KME25VB222M16X25MCV
C105-C106	0180-4116	3	CAP-FXD 22uF +-20\% 20 V TA	00039	NRD226M20R12
C107	0180-4433	2	CAP-FXD 1000uF +-20\% 50 V AL-ELCTLT	06360	KME50VB102M16X25MCV
C108	0180-3751	2	CAP-FXD 1uF +-20\% 35 V TA	00039	NRS105M35R8
C109	0180-4433		CAP-FXD 1000uF +-20\% 50 V AL-ELCTLT	06360	KME50VB102M16X25MCV
C110	0180-3751		CAP-FXD 1uF +-20\% 35 V TA	00039	NRS105M35R8
C112-C116	0160-5945	9	CAP-FXD 0.01uF +-10\% 50 V CER X7R	02010	08055C103KATA
C121	0180-4435		CAP-FXD 2200uF +-20\% 25 V AL-ELCTLT	06360	KME25VB222M16X25MCV
C132	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C151	0180-4116		CAP-FXD 22uF +-20\% 20 V TA	00039	NRD226M20R12
C160	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C180-C182	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C181	0160-8367	1	CAP-FXD 1uF +-10\% 10 V CER	06352	C2012X5R1A105K
C183	0160-5947	6	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C201	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C204-C205	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C209	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C212-C214	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C218	0160-5945		CAP-FXD 0.01uF +-10\% 50 V CER X7R	02010	08055C103KATA
C219	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C220	0180-3744	1	CAP-FXD 4.7uF +-20\% 10 V TA	00039	NRS475M10R8
C221	0160-5945		CAP-FXD 0.01uF +-10\% 50 V CER X7R	02010	08055C103KATA
C222-C223	0160-5957	4	CAP-FXD 47pF +-5\% 50 V CER C0G	03292	0160-5957
C224	0180-4228	1	CAP-FXD 47uF 10 V TA	05524	293D476X00101D2W
C270-C272	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA
C290-C292	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C301-C312	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C313	0160-5957		CAP-FXD 47pF +-5\% 50 V CER COG	03292	0160-5957
C314	0160-5946	1	CAP-FXD 3300pF 50 V	02010	08051C332KATA
C315	0160-5961	1	FIXED CAPACITOR; 22PF 50 VOLTS	02010	08055A220JATA
C316	0160-5957		CAP-FXD 47pF +-5\% 50 V CER COG	03292	0160-5957
C317-C320	0180-4287	4	CAP-FXD 10uF +-20\% 35 V TA	05524	293D106X0035D2W
C330-C331	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C350-C351	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C370	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA
C373	0160-5945		CAP-FXD 0.01uF +-10\% 50 V CER X7R	02010	08055C103KATA
C401-C409	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C410	0160-5945		CAP-FXD 0.01uF +-10\% 50 V CER X7R	02010	08055C103KATA
CR101-CR104	1901-1375	4	DIODE, 3A, 400V, 75NS,NON-PHOTOSENSITIVE	02037	MURS340
CR105	1906-0407	2	DIODE-FW BRDG 400V 1A	12810	DB104S
CR106-CR107	1902-1609	2	DIODE-ZNR 6.2V 5\% PD=1.5W IR=5UA	02037	1SMB5920B
CR108	1902-1512	1	DIODE-ZNR 7.5V 5\% TO-236 (SOT-23)	02910	BZX84C7V5
CR109	1906-0407		DIODE-FW BRDG 400 V 1 A	12810	DB104S
CR110	1906-0291	12	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR183	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR201-CR202	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR301-CR310	1906-0291		DIODE-DUAL 70V 100MA TO-236AA	02910	BAV99
E102	9170-1584	15	CORE-SHLD BEAD	09808	25Z0805-OSR
E103	1205-0686	3	HEAT SINK SGL TO-220-CS	07179	576802B04000
E105-E106	1205-0686		HEAT SINK SGL TO-220-CS	07179	576802B04000
E120-E124	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
E201	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
E202-E203	9170-1506	2	CORE-MAGNETIC	06352	HF50ACB201209
E204	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
E206-E208	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
E301	9170-1663	1	CORE-SHIELDING BEAD	11702	FBM4532HM132
E315-E318	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
J201	1252-4484	1	CONN-POST TYPE 2.0-PIN-SPCG 12-CONT	03418	52007-1210
J202	1252-8542	1	CONN FRCC VERT MALE 26PIN	04726	2526-6302
J302	1252-2161	1	CONN-RECT MICRORBN 24-CKT 24-CONT	01380	554923-2
MAJ302	2190-0577	2	WASHER- NO. $10.194-I N-I D .294-I N-O D$	02361	2190-0577
MAU101	1205-1178	1	HEAT SINK	02361	1205-1178
MBJ302	2190-0577		WASHER- NO. $10.194-I N-I D .294-I N-O D$	02361	2190-0577
MCJ302	0380-0643	2	STANDOFF-HEX . $255-\mathrm{IN}-\mathrm{LGG} 6-32-\mathrm{THD}$	02361	0380-0643
MDJ302	0380-0643		STANDOFF-HEX . $255-\mathrm{IN}-\mathrm{LGG} 6$-32-THD	02361	0380-0643
P101	1252-4487	1	CONN-POST TYPE .156-PIN-SPCG 3-CONT	03418	26-64-4030
P102	1252-4488	1	CONN-POST TYPE .156-PIN-SPCG 8-CONT	03418	26-64-4080
P110	1251-5066	1	CONN-POST TYPE 2.5-PIN-SPCG-MTG-END	03418	22-04-1021

Chapter 7 Replaceable Parts
34970-66501 Main PC Assembly (A1)

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
P201	1251-0600	1	CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	01136	928-196-004140
P302	34970-61601	1	CABLE, DGTL-BKPLN	03418	22-43-2060
P303	34970-61602	1	CABLE, RS232-DGTL	04726	87920-1000
Q101	1855-1101	1	TRANSISTOR-MOSFET DUAL P-CHAN E-MODE SI	02037	MMDF2P02E
Q102	1854-1037	1	TRANSISTOR NPN SI TO-236AA PD=350MW	02237	MMBT3904
Q110	1855-0926	1	FET NMOS 2X SOBN 30V 1.5A R MMDF1N05	02037	MMDF1NO5E
Q120	1853-0724	1	TRANSISTOR PNP SI TO-261AA (SOT-223)	06121	PZT2907A
R101	0699-2643	6	RESISTOR $0+5 \%$. 1 W TKF TC=0+-300	06337	9C08052A0R00JL
R102	0699-2990	2	RESISTOR $42.2 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A4222FKR
R103	0699-2643		RESISTOR $0+5 \%$. 1 W TKF TC=0+-300	06337	9C08052A0R00JL
R104	0699-2990		RESISTOR 42.2K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A4222FKR
R105-R106	0699-3051	9	RESISTOR $10 \mathrm{~K}+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A1002FKR
R107	0699-3060	2	RESISTOR 237 +-1\% .1W TKF TC=0+-100	06337	9C08052A2370FKR
R108	0699-3740	1	RESISTOR 3.32K $+1 \%$.1W TKF TC=0 + - 100	00746	MCR10-F-X-3321
R109	0699-2643		RESISTOR $0+5 \%$. 1 W TKF TC=0+-300	06337	9C08052A0R00JL
R110	0699-3060		RESISTOR 237 +-1\% .1W TKF TC=0+-100	06337	9C08052A2370FKR
R111	0699-3040	1	RESISTOR $3.16 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	02995	9C08052A3161FKR
R112	0699-2643		RESISTOR $0+5 \%$. 1 W TKF TC=0+-300	06337	9C08052A0R00JL
R114-R115	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0t-100	06337	9C08052A1002FKR
R118-R120	0699-3053	31	RESISTOR 100K +-1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R130-R131	0699-3034	17	RESISTOR $1 \mathrm{~K}+-1 \%$. 1 W TKF TC=0 +100	06337	9C08052A1001FKR
R132	0699-3053		RESISTOR 100K $+-1 \% .1 \mathrm{~W}$ TKF TC=0 + - 100	02995	9C08052A1003FKR
R133	0699-2643		RESISTOR $0+5 \%$. 1 W TKF TC=0+-300	06337	9C08052A0R00JL
R183	0699-3067	1	RESISTOR 14.7K +-1pct .1W TKF TC=0+-100	05524	CRCW08051472F
R201	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R202	0699-2965	13	RESISTOR $46.4 \mathrm{~K}+1 \%$.1W TKF TC $=0+-100$	06337	9C08052A4642FKR
R203	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+-100$	06337	9C08052A1001FKR
R206	0699-3058	19	RESISTOR $100+-1 \% .1 W$ TKF TC=0+-100	06337	9C08052A1000FKR
R208-R209	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R210	0699-3001	2	RESISTOR 215K + -1\% .1W TKF TC=0+-100	06337	9C08052A2153FKR
R211	0699-3819	1	RESISTOR 10M +-5\% .1W TKF TC=0+-100	05524	CRCW08051005J
R212	0699-3058		RESISTOR $100+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1000FKR
R213	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R214	0699-2983	3	RESISTOR $5.62 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A5621FKR
R215-R216	0699-3058		RESISTOR $100+-1 \% .1 W$ TKF TC=0+-100	06337	9C08052A1000FKR
R217	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R219-R220	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A1001FKR
R221	0699-3051		RESISTOR $10 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A1002FKR

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
R222	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R251	0699-3058		RESISTOR $100+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1000FKR
R252-R254	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1001FKR
R255-R259	0699-3058		RESISTOR $100+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1000FKR
R260	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R261	0699-2965		RESISTOR $46.4 \mathrm{~K}+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A4642FKR
R262	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R270	0699-3001		RESISTOR $215 \mathrm{~K}+1 \mathrm{lpct} .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A2153FKR
R271-R273	0699-2977	6	RESISTOR $681+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A6810FKR
R275	0699-2983		RESISTOR $5.62 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A5621FKR
R277	0699-2983		RESISTOR $5.62 \mathrm{~K}+1 \%$.1W TKF TC $=0+$-100	06337	9C08052A5621FKR
R301-R302	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R303	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R304	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1001FKR
R305-R309	0699-3058		RESISTOR $100+1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1000FKR
R310	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R311	0699-3050	1	RESISTOR 100K + -1\% .1W TKF TC=0+-100	06337	9C08052A9091FKR
R312	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1001FKR
R313	0699-3077	1	RESISTOR 1M +-1\% .1W TKF TC=0+-100	06337	9C08052A1004FKR
R314	0699-3035	1	RESISTOR $1.47 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1471FKR
R315	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1001FKR
R330-R331	0699-2977		RESISTOR $681+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A6810FKR
R340	0699-2965		RESISTOR $46.4 \mathrm{~K}+1 \%$. 1 W TKF TC $=0+-100$	06337	9C08052A4642FKR
R350	0699-3058		RESISTOR $100+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1000FKR
R351-R358	0699-2965		RESISTOR $46.4 \mathrm{~K}+1 \%$. 1 W TKF TC $=0+-100$	06337	9C08052A4642FKR
R360-R362	0699-3058		RESISTOR $100+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1000FKR
R370	0699-2977		RESISTOR $681+-1 \%$.1W TKF TC=0+-100	06337	9C08052A6810FKR
R371-R372	0699-2965		RESISTOR $46.4 \mathrm{~K}+1 \%$. 1 W TKF TC $=0+-100$	06337	9C08052A4642FKR
R373	0699-3051		RESISTOR $10 \mathrm{~K}+1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1002FKR
R375	0699-3051		RESISTOR 10K $+-1 \% .1 \mathrm{~W}$ TKF TC=0 + -100	06337	9C08052A1002FKR
R380	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+-100$	06337	9C08052A1001FKR
R401	0699-2643		RESISTOR $0+5 \%$. 1 W TKF TC=0+300	06337	9C08052A0R00JL
R403-R423	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
U101	1826-2794	1	IC V RGLTR-FXD-POS 4.85/5.15V 3-TO-220	03406	LM2490CT-5.0-LB01
U102	1826-2264	1	IC PWR MGT-UND-V-SEN 8 PINS P-SOIC PKG	02037	MC34064D-5
U103	1826-1597	1	IC PWR MGT-V-REG-FXD-POS 4.85/5.15V	03406	LM2940CT-5.0
U104	1826-3044	1	IC PWR MGT-VS-SUPVR/CONT 16 PINS P-SOIC	03285	ADM691AR
U105	1826-0393	1	IC PWR MGT-V-REG-ADJ-POS 1.2/37V 3 PINS	01698	LM317KC
U106	1826-0527	1	IC PWR MGT-V-REG-ADJ-NEG 1.2/37V 3 PINS	03406	LM337T

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
U107	1826-1572	1	IC COMPARATOR PRCN DUAL 8 PIN PLSTC-SOIC	02910	LM393D
U150	1826-2817	1	IC PWR MGT-V-REF-FXD 4.975/5.025V 3 PINS	03406	LM4040CIM3-5.0
U201	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U204	1813-0827	1	CLK-OSC-XTAL STD 12.000-MHZ 0.01\%	12768	SG-615P-12.000MC
U205	1821-1479	1	IC-80C196	03811	N80C196KB16
U209	1821-2271	1	ASIC 0.8U GATE ARRAY PERIPH/MEM CONTROL	03677	6559.024
U212	1820-5937	1	IC FF CMOS/AC D-TYPE POS-EDGE-TRIG	03406	74AC74SC
U213-U214	1990-1552	4	OPTO-ISOLATOR LED-IC GATE IF=10MA-MAX	01542	HCPL-2211-300
U215	9164-0173	1	ALARM-AUDIBLE PIEZO ALARM PIN TYPE; 25V	09939	PKM22EPP-4002S
U220	1821-3433	1	7S14-SINGLE GATE, INVERTER, SCHMIT TRIGTNY	03406	NC7S14M5
U301	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07
U302	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
U303	1990-1552		OPTO-ISOLATOR LED-IC GATE IF=10MA-MAX	01542	HCPL-2211-300
U304	1820-7312	3	IC SCHMITT-TRIG CMOS/ACT INV HEX	02037	MC74ACT14DR2
U305	34970-88803	1	PROG PART LOWER LEVEL 1821-1876	02362	34970-88803
U306	1820-7312		IC SCHMITT-TRIG CMOS/ACT INV HEX	02037	MC74ACT14DR2
U307	1820-6863	1	IC-UART WITH FIFO	03406	PC16550DV
U308	1820-6823	1	IC INTERFACE DRVR/RCVR CMOS TPL -888-BIT	02037	MC145407DWR2
U309	1822-0639	1	IC HPIB CONTROLLER	03677	14063-501
U310	1820-6175	1	IC-INTERFACE XCVR BIPOLAR BUS OCTL	01698	SN75ALS162DW
U311	1820-6176	1	IC-INTERFACE XCVR BIPOLAR BUS OCTL	01698	SN75ALS160DW
U312	1990-1552		OPTO-ISOLATOR LED-IC GATE IF=10MA-MAX	01542	HCPL-2211-300
U320	1820-7312		IC SCHMITT-TRIG CMOS/ACT INV HEX	02037	MC74ACT14DR2
U401	34970-88806	1	OTP - PROG 1818-5589	02362	34970-88806
U402-U405	1818-8796	4	IC 1M-BIT SRAM 70-NS CMOS 32-SOP	00039	UPD3100AGW-70LL
U410	1818-5917	1	IC 256K-BIT SRAM 70-NS CMOS	06916	CXK58257AM-70LL (UNPRGMD)
XU305	1200-1592	2	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822275-1
XU401	1200-1592		SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822275-1
Y201	0410-2153	1	CRYSTAL-QUARTZ 32.768 KHZ	10421	MC-405, 32.768K
Y301	0410-2622	1	CRYSTAL-QUARTZ 3.6864 MHZ	09235	FPX0368-20

34970-66502 Front-Panel and Keyboard PC Assembly (A2)

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C1	0180-3751	1	CAP-FXD 1uF +-20\% 35 V TA	00039	NRS105M35R8
C2	0180-4287	1	CAP-FXD 10uF +-20\% 35 V TA	05524	293D106X0035D2W
C3-C13	0160-7798	11	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
CR1	1902-1542	1	DIODE-ZNR 6.2V 5\% TO-236 (SOT-23)	02037	BZX84C6V2
CR2	34970-89301	1	INDICATOR PANEL, VACUM FLOURESCENT DSPLY	11908	34970-89301
E1	34970-00604	1	SHIELD, ESD TEMP PART FOR ASSY34970-66502	02361	34970-00604
E2	9170-1506	1	CORE-MAGNETIC	06352	HF50ACB201209
J1	34970-61612	1	CABLE, DISPLAY	02632	34970-61612
R1	0699-3070	1	RESISTOR $26.1 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A2612FKR
R2	0699-3039	1	RESISTOR $2.61 \mathrm{~K}+-1 \%$. 1 W TKF TC=0+-100	06337	9 C 08052 A 2611 FKR
R3-R4	0699-3053	2	RESISTOR 100K +-1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R5-R7	0699-3051	4	RESISTOR 10K $+1 \%$.1W TKF TC=0 + - 100	06337	9 C 08052 A 1002 FKR
R8-R10	0699-3058	3	RESISTOR $100+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9 C 08052 A 1000 FKR
R11	0699-3051		RESISTOR 10K + -1\% .1W TKF TC=0+-100	06337	9 C 08052 A 1002 FKR
U1	34970-88812	1	PGM'D 1820-8905 8 BIT MCU W/4K EPROM	02632	34970-88812
U2	1826-1734	1	IC PWR MGT-V-REG-FXD-POS 4.8/5.2V 3 PINS	02037	MC78M05CDT
U3	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07
U4-U5	1820-5330	2	IC-INTERFACE DRVR BIPOLAR DISPLAY	01698	SN75518FN
U6	1826-1528	1	IC COMPARATOR LP QUAD 14 PIN PLSTC-SOIC	02037	LM339D
U7	1826-2264	1	IC 34064	02037	MC34064D-5
U8	0960-0961	1	ROTARY ENCODER 24POS TH-VERT	03744	ECLOJ-C24-SE002

■ 34970-66503 Backplane PC Assembly (A3)

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C109	$0160-7438$	1	CAP-FXD 0.014F +-10\% 500 V CER X7R	02010	$12107 C 103$ KATA
E101-E102	$1970-0100$	2	TUBE-ELECTRON SURGE V PTCTR	11484	$1970-0100$
J1	$1400-0977$	1	CLIP BAT	05535	209
L101-L102	$9140-1194$	2	INDUCTOR 10NH +-10\% 2.8W-MMX3.4LG-MM	02366	KL32TE010K
P101-P103	$1252-8025$	3	CONN DIN VERT MALE 48PIN	02010	$16-8477-048-001-025$
P104	$1252-3442$	1	CONN-POST TYPE .100-PIN-SPCG 6-CONT	03418	$705-55-0075$
P105	$1252-3441$	1	CONN DIS RA M SPIN SMC	03418	$705-55-0074$
P106	$34970-61611$	1	BACKPLANE CABLE	00003	$34970-61611$
R101	$0699-1327$	1	RESISTOR 1M +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R160	$0699-4820$	1	RESISTOR 220 5\% AXIA1 .5W TC=0+200PPM	05524	RNX-3/8N220RJM
RV101-RV102	$0837-0509$	2	DIO, MOV, OPERV=230VRMS, 17J,	06121	SIOV-CU4032K230GK1

34970-66504 Internal DM M PC Assembly (A4)

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C100	0160-6839	1	CAP-FXD 470pF 630 V POLYP-FL	02995	703E1AD471PG631TX
C101-C103	0160-6842	3	CAP-FXD 220pF 630 V POLYP-FL	02995	703E1AD221PG631TX
C104	0160-6497	17	CAP-FXD 0.14 F 25 V	02010	12065C104KATA
C105	0160-6731	4	CAP-FXD 1000pF 50 V	02010	12065C102KATA
C106-C107	0160-5967	3	CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C108	0160-6736	7	CAP-FXD 0.01uF 50 V	02010	12065C103KATA
C110	0160-6497		CAP-FXD 0.1uF 25 V	02010	12065C104KATA
C111	0160-5967		CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C113	0160-6497		CAP-FXD 0.14 F 25 V	02010	12065C104KATA
C120	0160-6497		CAP-FXD 0.1uF 25 V	02010	12065C104KATA
C150	0160-6497		CAP-FXD 0.14 F 25 V	02010	12065C104KATA
C151	0160-6736		CAP-FXD 0.01uF 50 V	02010	12065C103KATA
C152	0160-6731		CAP-FXD 1000pF 50 V	02010	12065C102KATA
C160	0160-6736		CAP-FXD 0.01uF 50 V	02010	12065C103KATA
C210	0160-5954	4	CAP 220PF 5\% 50V	02010	08055A221JATA
C212	0160-6497		CAP-FXD 0.1uF 25 V	02010	12065C104KATA
C301	0160-6778	1	CAP 0.22uF 400 V	05176	HEW-671-220NF+/-10\%400V
C302	0160-7605	1	CAP-FXD 1.8pF +-13.89\% 1.5 kV CER COG	02010	MA30SA1R8CAA
C303	0160-6098	1	CAP-FXD 680pF +-5\% 50 V CER COG	02010	12065A681JATA
C304	0160-5973	1	CAP-FXD 6.8pF 50 V	02010	08055A6R8DATA
C305	0160-6096	1	CAP-FXD 470pF +-5\% 50 V CER COG	02010	12065A471JATA
C306	0160-5972	1	CAP-FXD 5.6pF +-8.93\% 50 V CER COG	02010	08051A5R6DATA
C307	0160-5967		CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C308-C310	0160-6497		CAP-FXD 0.1uF 25 V	02010	12065C104KATA
C313	0160-5955	1	CAP-FXD 68pF +-5\% 50 V CER C0G	12473	0160-5955
C314-C315	0160-6497		CAP-FXD 0.14 F 25 V	02010	12065C104KATA
C316	0160-5892	2	CAPACITOR-FXD .22UF +-10\% 63VDC	05524	MKT1817422065
C317	0160-6729	1	CAP. FIXED. CER./CHIP	02010	12065C332KATA
C318	0160-5892		CAPACITOR-FXD .22UF +-10\% 63VDC	05524	MKT1817422065
C319-C320	0160-6497		CAP-FXD 0.14 F 25 V	02010	12065C104KATA
C321	0160-5469	1	CAPACITOR-FXD 1UF +-10\% 50VDC	10881	BF064D0105KDB
C322-C323	0180-4825	2	CAP-FXD 22uF +-20\% 35 V TA	12340	T495X226M035AS
C324	0160-5959	2	CAP-FXD 33pF +-5\% 50 V CER COG	02010	08055A330JATA
C326	0160-6731		CAP-FXD 1000pF 50 V	02010	12065C102KATA
C327	0160-5959		CAP-FXD 33pF +-5\% 50 V CER COG	02010	08055A330JATA
C330	0180-4559	1	CAP-FXD 68uF +-20\% 10 V TA	12340	T491D686M010AS
C350-C351	0160-6736		CAP-FXD 0.01uF 50 V	02010	12065C103KATA
C400-C402	0160-5954		CAP 220PF 5\% 50V	02010	08055A221JATA

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C403-C404	0160-6497		CAP-FXD 0.14 F 25 V	02010	12065C104KATA
C407-C408	0160-6497		CAP-FXD 0.1uF 25 V	02010	12065C104KATA
C410	0160-6497		CAP-FXD 0.1uF 25 V	02010	12065C104KATA
C441-C442	0160-6736		CAP-FXD 0.01uF 50 V	02010	12065C103KATA
C443	0699-2963	3	RESISTOR $121+$-1pct .1W TKF TC=0+-100	00746	MCR10-FZHM-F-1210
C460	0160-6731		CAP-FXD 1000pF 50 V	02010	12065C102KATA
CR103	1902-1565	1	DIODE-ZNR 4.7V 5\% TO-236 (SOT-23)	02910	BZX84-C4V7
CR110-CR113	1901-1607	4	DIODE-PWR RECT 400V DO-214AB	04733	S3G
CR115	1902-1565		DIODE-ZNR 4.7V 5\% TO-236 (SOT-23)	02910	12065C102KATA
CR201	1902-1565	1	DIODE-ZNR 4.7V 5\% TO-236 (SOT-23)	02910	BZX84-C4V7
CR202	1901-1378	1	DIODE; HV RECTIFIER 1.6KV	04504	GP10Y
CR203	1902-1592	1	DIODE-ZNR 5.1V 5\% TO-236 (SOT-23)	02037	BZX84C5V1
CR302-CR303	1906-0291	4	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR304-CR307	1902-1541	5	DIODE-ZNR 3.3V 5\% TO-236 (SOT-23)	02037	BZX84C3V3
CR401-CR402	1902-1541		DIODE-ZNR 3.3V 5\% TO-236 (SOT-23)	02037	BZX84C3V3
CR403-CR404	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
K102-K104	0490-1896	3	RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
L101	9140-1244	2	INDUCTOR 1MH +-5\% 3.4W-MMX4.8LG-MM Q=30	05524	IMC-18121000.0UH+/-5\%
L102	9140-1238	3	INDUCTOR 10UH +-5\% 2.8W-MMX3.4LG-MM Q=30	02366	KL32TE100J
L106	9140-1244		INDUCTOR 1MH +-5\% 3.4W-MMX4.8LG-MM Q=30	05524	IMC-18121000.0UH+/-5\%
L110-L111	9140-1238		INDUCTOR 10UH +-5\% 2.8W-MMX3.4LG-MM Q=30	02366	KL32TE100J
L401-L402	9170-1431	2	CORE-SHLD BEAD	06352	HF50ACB-453215
L404	9170-1506	1	CORE-MAGNETIC	06352	HF50ACB201209
L405-L407	9170-1584	3	CORE-SHLD BEAD	09808	25Z0805-OSR
P100	34970-61604	1	CABLE, DMM-DGTL	04726	87926-1000T
P101	34970-61603	1	CABLE, DMM-BKPLN	02362	34970-61603
Q104-Q105	1855-0752	2	TRANSISTOR J-FET N-CHAN D-MODE TO-236AA	03406	MMBF4392
Q150-Q153	1854-1014	4	TRANSISTOR NPN SI TO-236AA PD=350MW	04200	TMPT6429
Q201	1855-0752		TRANSISTOR J-FET N-CHAN D-MODE TO-236AA	03406	MMBF4392
Q202	1855-1671	1	TRANSISTOR J-FET P-CHAN D-MODE TO-92	02237	ZN5461
Q203-Q210	1853-0727	8	TRANSISTOR PNP SI SOT-23 (TO-236AB)	02237	MMBT6520L
Q211	1855-1672	1	TRANSISTOR J-FET N-CHAN D-MODE TO-92	02237	PN4117A_D26Z
Q301	1855-0800	1	TRANSISTOR MOSFET N-CHAN E-MODE TO-252AA	02037	MTD3055EL

Reference Designator	Part Number	Qty	Part Description	$\begin{gathered} \mathrm{Mfr} \\ \text { Code } \end{gathered}$	Mfr Part Number
R103	0699-1380	3	RESISTOR 3.16K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R104	0699-4821	3	RESISTOR 75K 5\% 2512 200V 1W TC=200	05524	CRCW2512753J
R105	0699-3406	3	RESISTOR $24 \mathrm{~K}+-5 \%$ 1W TKF TC=0+-200	05524	CRCW2512243J
R112-R113	0699-3053	2	RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R114-R117	0699-2973	12	RESISTOR $215+1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R118	0699-1380		RESISTOR 3.16K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R119	0699-2973		RESISTOR $215+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A2150FKR
R121	0699-5049	1	RESISTOR $5+-1$ pct .125 W TF TC=0+-20	05524	VTA56V4 5R 1.0\% T/R
R122	0699-1329	2	RESISTOR 6.19K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R123	0699-4845	1	RESISTOR . 10 1\% RES3F 2W TC=25PPM/DEGC	05524	WSR-2. 1 +/-1\%
R124	0699-3046	1	RESISTOR $6.19 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+100$	06337	9C08052A6191FKR
R126-R127	0699-2986	2	RESISTOR $21.5 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A2152FKR
R130	0699-3067	1	RESISTOR $14.7 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1472FKR
R131	0699-2986		RESISTOR $21.5 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A2152FKR
R150	0699-3051	2	RESISTOR 10K $+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A1002FKR
R151	0699-3029	1	RESISTOR $316+-1 \%$.1W TKF TC=0+-100	06337	9C08052A3160FKR
R170	0699-4821		RESISTOR 75K 5\% 2512 200V 1W TC=200	05524	CRCW2512753J
R173	0699-3406		RESISTOR 24K + -5\% 1W TKF TC=0+-200	05524	CRCW2512243J
R183	0699-3406		RESISTOR 24K +-5\% 1W TKF TC=0+-200	05524	CRCW2512243J
R184	0699-4821		RESISTOR 75K 5\% 2512 200V 1W TC=200	05524	CRCW2512753J
R196	0699-3051		RESISTOR $10 \mathrm{~K}+1 \% .1 \mathrm{~W}$ TKF TC=0 + - 100	06337	9C08052A1002FKR
R197	0699-3049	1	RESISTOR $8.25 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A8251FKR
R198	0699-3034	1	RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1001FKR
R201	0699-3404	1	RESISTOR 400K $+-1 \%$. 125 W TF TC=0+-2	06337	5023ZT400K0F
R202	0699-4416	1	RESISTOR 40K + -1\% . 5 W MF TC=0+-. 0031	05524	S102C40K000 1\%
R203-R206	0699-1332	4	RESISTOR 196K $+-1 \%$. 125 W TKF TC=0+-100	04935	9C12063AFKR
R207	0699-3038	1	RESISTOR $2.37 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A2371FKR
R290	0699-1374	3	RESISTOR 1.78K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R301-R302	0699-2469	2	RESISTOR $500 \mathrm{~K}+-0.25 \%$. 25 W TF TC=0 +-5	09454	PR1/4TC5500K.25\%
R303	0699-1307	1	RESISTOR 1.96K + -0.1\% .1W TF TC=0+-5	02995	50232
R304	0699-0481	1	RESISTOR 200K $+-1 \%$. 1 W TF TC=0+-10	02995	$5023 Z$
R305	0699-1374		RESISTOR 1.78K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R306	0699-1423	3	RESISTOR $215+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R307	0699-1374		RESISTOR 1.78K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R308	0699-1423		RESISTOR $215+-1 \% .125 W$ TKF TC=0+-100	04935	9C12063AFKR
R309	0699-1329		RESISTOR 6.19K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R310	0699-2973		RESISTOR $215+1 \%$.1W TKF TC=0 $0-100$	06337	9C08052A2150FKR
R311-R312	0699-1412	3	RESISTOR 75K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R313	0699-1380		RESISTOR 3.16K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R314	0699-1398	5	RESISTOR $21.5 \mathrm{~K}+$ +1\% .125W TKF TC=0+-100	04935	9C12063AFKR

Chapter 7 Replaceable Parts

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
R315	0699-1327	1	RESISTOR 1M +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R316	0699-1423		RESISTOR $215+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R317	0699-1406	2	RESISTOR 42.2K $+-1 \%$.125W TKF TC=0+-100	04935	9C12063AFKR
R318	0699-1318	4	RESISTOR $1 \mathrm{~K}+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R319	0699-1398		RESISTOR 21.5K + -1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R320	0699-1427	1	RESISTOR $316+-1 \% .125 W$ TKF TC=0+-100	04935	9C12063AFKR
R321	0699-1382	1	RESISTOR 3.83K + -1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R322	0699-1412		RESISTOR 75K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R323-R324	0699-1398		RESISTOR 21.5K + -1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R325-R326	0699-2973		RESISTOR $215+-1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R327	0699-1398		RESISTOR 21.5K $+-1 \%$. 125 W TKF TC=0+-100	04935	9C12063AFKR
R398-R399	0699-1391	3	RESISTOR 10K $+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R403	0699-1391		RESISTOR 10K $+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R405	0699-1380		RESISTOR 3.16K $+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R406	0699-1330	1	RESISTOR 100K $+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R407-R408	0699-1318		RESISTOR $1 \mathrm{~K}+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R409	0699-1372	1	RESISTOR 1.47K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R420	0699-1389	1	RESISTOR 8.25K + -1\% .125W TKF TC=0+-100	06337	9C12063A8251FKR
R421	0699-1318		RESISTOR $1 \mathrm{~K}+-1 \% .125 \mathrm{~W}$ TKF TC=0+-100	04935	9C12063AFKR
R422	0699-1360	1	RESISTOR $46.4+-1 \% .125 W$ TKF TC=0+-100	04935	9C12063AFKR
R430	0699-1503	1	RESISTOR . $05+-100 \%$ TKF	02995	9C12063A00R0JLR
R440	0699-1406		RESISTOR 42.2K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R441	0699-1394	1	RESISTOR 14.7K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R442	0699-2127	1	RESISTOR 36.5K +-1\% .125W TKF TC=0+-100	05524	CRCW12063652F
R450-R451	0699-2973		RESISTOR $215+-1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R460-R461	0699-2973		RESISTOR $215+-1 \%$. 1 W TKF TC=0+-100	06337	9C08052A2150FKR
RV102	0837-0320	1	VOLTAGE SUPPRESSOR VMAC=230V, VMDC=300V	06121	S07K230
SCR101	0515-0433	1	SCREW- X 8MM-LG -HD	02361	0515-0433
SHD101	34970-00603	1	SHIELD-DMM	02361	34970-00603
U101	1SK6-0001	1	INTEGRATED CIRCUIT; ASCI	02632	1SK6-0001
U102	1NB4-5035	1	CUST R NET PKG, REPLACES 34401-67901	02632	1NB4-5035
U103	1826-2420	5	IC OP AMP LP DUAL 8 PIN PLSTC-SOIC	03285	AD706JR
U104	1855-0864	1	TRANSISTOR, JFET DUAL	03406	NPDSU406
U105	1826-2558	3	IC OP AMP WB SINGLE 8 PIN PLSTC-SOIC	02037	MC34081BD
U106	1826-1925	2	IC OP AMP LOW-NOISE SINGLE 8 PIN	03285	OP-27GS
U110	1826-1810	1	IC OP AMP LOW-BIAS-H-IMPD SINGLE 8 PIN	01698	TL071CD
U150	1820-8937	1	IC Gate-ARY CMOS	03406	SCX6B04AKP
U153	1826-2420		IC OP AMP LP DUAL 8 PIN PLSTC-SOIC	03285	AD706JR

Chapter 7 Replaceable Parts
34970-66504 Internal DMM PC Assembly (A4)

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
U201	$1826-2420$		IC OP AMP LP DUAL 8 PIN PLSTC-SOIC	03285	AD706JR
U301	$1826-2436$	1	IC OP AMP WB 8 PIN PLSTC-SOIC	03406	LF356M
U302	$1826-2339$	1	IC; 8-BIT 16-P-SOIC CMOS	03285	AD7524JR
U303	$1826-4084$	3	IC OP AMP ANLG SINGLE 8 PIN PLSTC-SOIC	03285	AD825AR
U304	$1826-1985$	1	ANALOG SWITCH 4 SPST 16 -P-SOIC	02883	DG411DY
U305	$1826-4084$		IC OP AMP ANLG SINGLE 8 PIN PLSTC-SOIC	03285	AD825AR
U306	$1826-1609$	1	ANALOG SWITCH 4 SPST 16 -P-SOIC	03285	ADG211AKR
U307	$1827-0267$	1	MC34081BD	01698	TLE2071ACD
U308	$1826-2445$	1	RMS/DC 16-P-SOIC MISC	03285	AD637JR
U309	$1820-5790$	2	IC SHF-RGTR CMOS/HC SYNCHRO SERIAL-IN	02910	74HC4094D
U310	$1826-1572$	1	IC COMPARATOR PRCN DUAL 8 PIN	02910	LM393D
			PLSTC-SOIC		
U311	$1820-5790$		IC SHF-RGTR CMOS/HC SYNCHRO SERIAL-IN	02910	74HC4094D
U312	$1826-4084$		IC OP AMP ANLG SINGLE 8 PIN PLSTC-SOIC	03285	AD825AR
U400-U401	$1826-2420$		IC OP AMP LP DUAL 8 PIN PLSTC-SOIC	03285	AD706JR
U402	$1826-1991$	1	IC OP AMP HS SINGLE 8 PIN PLSTC-SOIC	03285	AD711JR
U403	$1826-1249$	1	IC, V RGLTR-V-REF-FXD	10858	LM399AH(SEL)
U411	$1821-3334$	1	IC-AN-MUX 74HC4053D 3X2:1 SOURCE-RESTRIC	02910	74HC4053D
U420	$1826-1925$		IC OP AMP LOW-NOISE SINGLE 8 PIN	03285	OP-27GS
U450	$1818-6821$	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
XU403	$1200-1672$	1	SOCKET-IC-DIP 4-CONT DIP-SLDR	02194	SBL-041-SP122-TG30

34901A 20-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C101-C106	0160-7798	8	CAP 0.1 UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C107	0160-7708	1	CAP-FXD 1000pF +-5\% 50 V CER COG	12340	C0805C102J5GAC
C109	0160-7798		CAP 0.1 UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C110	0160-7828	1	CAP . 1 uF 16V 10\% X7R	02010	0603C104KAT
C119-C124	0160-5947	6	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C125	0160-7845	2	CAP-FXD 180PF +-5\% 50 V CER COG	12340	C0603C181J5GAC
C127	0160-7845		CAP-FXD 180PF +-5\% 50 V CER COG	12340	C0603C181J5GAC
C140-C141	0160-5945	16	CAP-FXD 0.01 UF 50 V	02010	08055C103KATA
C145	0160-7798		CAP 0.1 UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C150	0180-4545		CAP-FXD 4.7 UF +-20\% 20 V TA	12340	T491B475M020AS
C151-C152	0160-5945		CAP-FXD 0.01 uF 50 V	02010	08055C103KATA
C160-C167	0160-5967	8	CAP-FXD 100pF +-5pct 50 V CER COG	02010	08055A101JAT A
C171-C174	0160-5945		CAP-FXD 0.01 uF 50 V	02010	08055C103KATA
C201-C207	0160-5945		CAP-FXD 0.01 uF 50 V	02010	08055C103KATA
CR102	1906-0395	5	DIODE-DUAL 75V TO-253	02910	BAS28
CR104	1902-1574	3	DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
CR106	1902-1574		DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
CR107	1906-0291	24	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR201-CR220	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR221-CR222	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
CR320-CR322	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR323-CR324	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
CR325	1902-1574		DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
F501-F502	2110-0043	2	FUSE (INCH) 1.5A 250V NTD FE UL-LST	04703	31201.5
HAF502	2110-0726	4	FUSEHOLDER-CLP-TYP	02603	1115-0597T
HBF502	2110-0726		FUSEHOLDER-CLP-TYP	02603	1115-0597T
HCF501	2110-0726		FUSEHOLDER-CLP-TYP	02603	1115-0597T
HDF501	2110-0726		FUSEHOLDER-CLP-TYP	02603	1115-0597T
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
J102-J104	0360-2624	4	CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
J105	0360-2623	1	CONN TERMNAL BK RA FEM 4 PIN	13389	M1.040.0001.8
J106	0360-2624		CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
K401-K420	0490-1896	24	RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
K421	0490-1895	3	RLY-2C 2A 220V 60WATT 4.5V COIL	12921	G6S-2-DC4.5

Chapter 7 Replaceable Parts
34901A 20-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	$\begin{aligned} & \text { Mfr } \\ & \text { Code } \end{aligned}$	Mfr Part Number
K423	0490-1895		RLY-2C 2A 220V 60WATT 4.5V COIL	12921	G6S-2-DC4.5
K521	0490-1895		RLY-2C 2A 220V 60WATT 4.5V COIL	12921	G6S-2-DC4.5
K522-K524	0490-1896		RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
L101-L103	9170-1663	3	CORE-SHIELDING BEAD	11702	FBM4532HM132
L105	9170-1584	12	CORE-SHLD BEAD	09808	25Z0805-OSR
L109-L115	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
L150	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
L152	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
L401-L402	9140-1638	2	INDUCTOR 10UH + 10\%-10\% 2.7W-MMX3.4LG-MM	06352	NLC322522T-100K
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001
Q101	1855-1101	1	TRANSISTOR	02037	MMDF2P02E
Q201	1854-1053	25	TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q202-Q203	1853-0525	22	TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q204	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q205	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q206-Q207	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q208-Q209	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q210	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q211	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q212-Q213	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q214	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q215	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q216-Q217	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q218	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q219	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q220-Q221	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q222-Q223	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q224	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q225	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q226-Q227	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q228	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q301-Q303	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q304	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q305	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q306	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q307	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q308	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907

Chapter 7 Replaceable Parts 34901A 20-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
Q309	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q310	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q311	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q312	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q313	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q314	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q315	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q316	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q317	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q318	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q319	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
R102-R103	0699-3034	11	RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R104	0699-3947	4	RESISTOR $1 \mathrm{~K}+-1 \% .063 \mathrm{~W}$ TKF TC=0+-200	06337	9C0603A1001FL
R105	0699-3034		RESISTOR 1K +-1\% .1W TKF TC=0+-100	06337	9C08052A1001FKR
R106-R109	0699-3970	5	RESISTOR 10K +-1\% .063W TKF TC=0+-200	06337	232270461003
R110-R112	0699-3974	3	Resistor 14.7K 1\% 0603 50V .063W TC=200	06337	9C0603A1472FL
R113	0699-3970		RES 10K 1\% .063W	06337	232270461003
R114-R115	0699-3067	2	RESISTOR 14.7K +-1\% .1W TKF TC=0+-100	06337	9C08052A1472FKR
R117-R121	0699-2973	5	RES 215, FIXED THIN FILM	06337	9C08052A2150FKR
R147	0699-3051	49	RESISTOR 10K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R148	0699-3077	1	RESISTOR 1M $+-1 \%$.1W TKF TC= $0+-100$	06337	9C08052A1004FKR
R149	0699-3051		RESISTOR 10K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R150-R154	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R155	0699-3947		RESISTOR $1 \mathrm{~K}+-1 \%$.063W TKF TC=0+-200	06337	9C0603A1001FL
R158	0699-3947		RESISTOR $1 \mathrm{~K}+-1 \% .063 \mathrm{~W}$ TKF TC=0+-200	06337	9C0603A1001FL
R166-R168	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R170-R180	0699-3963	11	RESISTOR 4.64K 1\% 0603 50V .063W TC=200	06337	9C0603A4641FL
R181	0699-3947		RESISTOR $1 \mathrm{~K}+-1 \%$.063W TKF TC=0+-200	06337	9C0603A1001FL
R182	0699-3932	2	RESISTOR $215+-1 \% .063 W$ TKF TC=0+-200	06337	9C0603A2150FL
R185	0699-3932		RESISTOR $215+-1 \% .063 W$ TKF TC=0+-200	06337	9C0603A2150FL
R201-R228	0699-3051		RESISTOR 10K $+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1002FKR
R301-R319	0699-3051		RESISTOR 10K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
U101	34901-88822	1	PRGM'D 1821-1876	01542	34901-88822
U102-U106	1820-5752	5	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U109	1820-5941	1	IC DCDR-DEMUXR CMOS/ACT BIN 8-TO-1-LINE	03406	74ACT138SC

Chapter 7 Replaceable Parts 34901A 20-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
U141	$1821-0055$	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
U150	$1818-6821$	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U151-U152	$1821-4861$	2	IC INTERFACE MISC	12186	DS75S
XU101	$1200-1592$	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	$3-822275-1$
Y101					

34902A 16-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C101-C104	0160-7798	4	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C105-C112	0160-5967	8	CAP-FXD 100PF 5\% 0805	03292	0160-5967
C113	0160-7828	1	CAP.1UF 16V 10\% X7R	02010	0603C104KAT
C120	0160-5947	1	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C125	0160-7845	2	CAP FXD 180PF +-5\% 50 V CER COG	12340	C0603C181J5GAC
C127	0160-7845		CAP FXD 180PF +-5\% 50 V CER COG	12340	C0603C181J5GAC
C140-C141	0160-5945	7	CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C150	0180-4545	1	CAP-FXD 4.7uF +-20\% 20 V TA	12340	T491B475M020AS
C151-C152	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C160-C162	0160-7708	3	CAP-FXD 1000pF +-5\% 50 V CER COG	12340	C0805C102J5GAC
C212-C214	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
CR102	1906-0395	11	DIODE-DUAL 75V TO-253	02910	BAS28
CR104	1902-1574	2	DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
CR106	1902-1574		DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
CR107	1906-0291	1	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR201-CR210	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
CR211	1902-1572	1	DIODE-ZNR 15V 5\% TO-236 (SOT-23) PD=.35W	02910	BZX84-C15
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
J401-J403	0360-2624	3	CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
K301-K316	0490-1897	19	RELAY-REED 2A 1A 300VDC 5VDC-COIL	04501	3500-0113
K326-K328	0490-1897		RELAY-REED 2A 1A 300VDC 5VDC-COIL	04501	3500-0113
L101-L102	9170-1663	3	CORE-SHIELDING BEAD	11702	FBM4532HM132
L104	9170-1584	10	CORE-SHLD BEAD	09808	25Z0805-0SR
L109-L115	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
L150	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
L152	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
L300	9170-1663		CORE-SHIELDING BEAD	11702	FBM4532HM132
L301-L302	9140-1638	2	INDUCTOR 10UH +10\% -10\% 2.7W-MMX3.4LG-MM	06352	NLC322522T-100K
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
Q101	1855-1101	1	TRANSISTOR	02037	MMDF2P02E
Q201-Q218	1854-1053	19	TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q220	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
R102-R103	0699-3034	6	RESISTOR $1 \mathrm{~K}+$-1\% .1W TKF TC=0+-100	06337	9C08052A1001FKR
R105	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R106-R109	0699-3970	5	RES 10K 1\% . 063 W	06337	232270461003
R110-R112	0699-3974	3	Resistor 14.7K 1\% 060350 V .063 W TC=200	06337	9C0603A1472FL
R113	0699-3970		RES 10K 1\% . 063 W	06337	232270461003
R114	0699-2973	6	RES 215, FIXED THIN FILM	06337	9C08052A2150FKR
R115	0699-3067	1	RESISTOR 14.7K +-1\% .1W TKF TC=0+-100	06337	9C08052A1472FKR
R117-R135	0699-3051	21	RESISTOR 10K +-1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R136-R138	0699-3947	8	RESISTOR $1 \mathrm{~K}+1 \% .063 W$ TKF TC=0+-200	06337	9C0603A1001FL
R140	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R141-R143	0699-3947		RESISTOR $1 \mathrm{~K}+1 \% .063 W$ TKF TC=0+-200	06337	9C0603A1001FL
R148	0699-3077	1	RESISTOR 1M +-1\% .1W TKF TC=0+-100	06337	9C08052A1004FKR
R149	0699-3051		RESISTOR 10K +-1\%.1W TKF TC=0+-100	06337	9C08052A1002FKR
R150-R151	0699-2973		RES 215, FIXED THIN FILM	06337	9C08052A2150FKR
R155	0699-3947		RESISTOR $1 \mathrm{~K}+1 \% .063 W$ TKF TC=0+-200	06337	9C0603A1001FL
R157	0699-3947		RESISTOR 1K +-1\% .063W TKF TC=0+-200	06337	9C0603A1001FL
R160-R162	0699-2973		RES 215, FIXED THIN FILM	06337	9C08052A2150FKR
R166-R168	0699-3034		RESISTOR 1K +-1\% .1W TKF TC=0+-100	06337	9C08052A1001FKR
R170-R177	0699-3963	8	RESISTOR 4.64K 1\% 060350 V . 063 W TC=200	06337	9C0603A4641FL
R182	0699-3932	2	RESISTOR 215 +-1\% .063W TKF TC=0+-200	06337	9C0603A2150FL
R185	0699-3932		RESISTOR 215 +-1\% .063W TKF TC=0+-200	06337	9C0603A2150FL
R401-R404	0699-4867	4	RESISTOR 10 1\% $12181.0 \mathrm{wtc}=0+100$	06337	23227351001
U101	34902-88842	1	PRGM'D 1821-1876	02632	34902-88842
U102-U104	1820-5752	3	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U141	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
U150	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U151-U152	1821-4861	2	IC INTERFACE MISC	12186	DS75S
XU101	1200-1592	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822499-1
Y101	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07

34903A 20-Channel Actuator

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C101-C104	0160-7798	5	CAP 0.1UF +-10\% 50V CER X7R	06352	C2012X7R1H104K
C107	0160-5947	4	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C110	0160-7798		CAP 0.1UF +-10\% 50V CER X7R	06352	C2012X7R1H104K
C116-C118	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA
C120-C127	0160-5967	8	CAP-FXD 100pF +-5\% 50 V CER COG	06352	C2012COG1H101J
C140-C141	0160-5945	9	CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C150	0180-4545	1	CAP-FXD 4.7uF +-20\% 20 V TA	12340	T491B475M020AS
C201-C207	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
CR102	1906-0395	5	DIODE-DUAL 75V TO-253	02910	BAS28
CR103	1902-1544	1	DIODE-ZNR 10V 5\% TO-236 (SOT-23) PD=.35W	02910	BZX84C10
CR201-CR220	1906-0291	20	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR221-CR222	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
CR224-CR225	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
J301-J305	0360-2624	5	CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
K208	0490-1896	20	RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
K301-K320	0490-1896		RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
L101-L102	9170-1663	2	CORE-SHIELDING BEAD	11702	FBMH4532HM132-T
L105	9170-1584	4	CORE-SHLD BEAD	09808	25Z0805-OSR
L109-L111	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001
Q101	1855-1101	1	TRANSISTOR-MOSFET DUAL P-CHAN E-MODE SI	02037	MMDF2P02E
Q201	1854-1053	14	TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q202-Q203	1853-0525	14	TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q204	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q205	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q206-Q207	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q208-Q209	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q210	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q211	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q212-Q213	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q214	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907

Reference Designator	Part Number	Qty	Part Description	$\begin{gathered} \text { Mfr } \\ \text { Code } \end{gathered}$	Mfr Part Number
Q215	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q216-Q217	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q218	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q219	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q220-Q221	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q222-Q223	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q224	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q225	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q226-Q227	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q228	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
R102-R103	0699-3034	12	RESISTOR $1 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	00746	MCR10-F-X-1001
R105	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	00746	MCR10-F-X-1001
R106-R109	0699-3051	35	RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R110-R112	0699-3067	4	RESISTOR $14.7 \mathrm{~K}+1 \%$. 1 W TKF TC=0+-100	00746	MCR10-F-X-1472
R113	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R114	0699-2973	6	RESISTOR $215+1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R115	0699-3067		RESISTOR $14.7 \mathrm{~K}+1 \%$. 1 W TKF TC $=0+-100$	00746	MCR10-F-X-1472
R116-R118	0699-2973		RESISTOR 215 +-1\% .1W TKF TC=0+-100	06337	9C08052A2150FKR
R120-R121	0699-2973		RESISTOR $215+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A2150FKR
R122-R127	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+100$	00746	MCR10-F-X-1001
R140	0699-3051		RESISTOR 10K $+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A1002FKR
R148	0699-3077	1	RESISTOR 1M +-1\% .1W TKF TC=0+-100	00746	MCR10-F-X-1004
R149	0699-3051		RESISTOR 10K $+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A1002FKR
R166-R168	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	00746	MCR10-F-X-1004
R170-R177	0699-3044	8	RESISTOR $4.64 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A4641FKR
R201-R228	0699-3051		RESISTOR $10 \mathrm{~K}+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
U101	34903-88801	1	PROGMD 1821-1876 MCU N87C52	02632	34903-88801
U102-U104	1820-5752	3	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U141	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
U150	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
XU101	1200-1592	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822499-1
Y101	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07

34904A 4x8 Matrix

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C140	0160-7798	1	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C151	0160-5947	1	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C154-C157	0160-5945	12	CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C158	0180-4545	1	CAP-FXD 4.7uF +-20\% 20 V TA	12340	T491B475M020AS
C164-C165	0160-5967	2	CF 100PF 5\% 0805	03292	0160-5967
C166	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C201-C207	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
CR101-CR109	1906-0291	33	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR110-CR111	1906-0395	3	DIODE-DUAL 75V TO-253	02910	BAS28
CR201-CR208	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR301-CR308	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR401-CR408	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR409	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
J102-J107	0360-2623	6	CONN TERMNAL BK RA FEM 4 PIN	13389	M1.040.0001.8
K101-K108	0490-1896	32	RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
K201-K208	0490-1896		RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
K301-K308	0490-1896		RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
K401-K408	0490-1896		RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
L101-L102	9140-1782	2	INDUCTOR 4.7uH +10\% -10\%	06352	NLC565050T-4R7K
L105-L109	9170-1584	5	CORE-SHLD BEAD	09808	25Z0805-OSR
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001
Q101	1855-1101	1	TRANSISTOR	02037	MMDF2P02E
Q111	1853-0525	12	TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q113	1854-1053	12	TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q121	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q123	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q131	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q133	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q141	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q143	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q211	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
Q213	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q221	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q223	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q231	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q233	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q241	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q243	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q251	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q253	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q261	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q263	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q271	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q273	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q281	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q283	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
R111	0699-3051	32	RESISTOR 10K + -1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R113	0699-3051		RESISTOR 10K +-1\%.1W TKF TC=0+-100	06337	9C08052A1002FKR
R121	0699-3051		RESISTOR 10K +-1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R123	0699-3051		RESISTOR 10K +-1\%.1W TKF TC=0+-100	06337	9C08052A1002FKR
R131	0699-3051		RESISTOR 10K $+1 \% .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A1002FKR
R133	0699-3051		RESISTOR 10K +-1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R141	0699-3051		RESISTOR 10K +-1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R143	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0 + -100	06337	$9 \mathrm{C08052A1002FKR}$
R147	0699-3051		RESISTOR 10K + -1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R148	0699-3053	1	RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R149	0699-3051		RESISTOR 10K +-1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R151-R152	0699-3034	6	RESISTOR $1 \mathrm{~K}+1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	$9 \mathrm{C08052A1001FKR}$
R154	0699-3034		RESISTOR $1 \mathrm{~K}+1 \%$. 1 W TKF TC $=0+-100$	06337	$9 \mathrm{C08052A1001FKR}$
R155	0699-3061	1	RESISTOR $261+-1 \%$.1W TKF TC=0+-100	06337	9C08052A2610FKR
R156-R158	0699-3067	3	RESISTOR 14.7K +-1\% .1W TKF TC=0+-100	06337	9C08052A1472FKR
R160-R163	0699-3051		RESISTOR 10K + -1\% .1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1002FKR}$
R164-R165	0699-2973	2	RES 215, FIXED THIN FILM	06337	$9 \mathrm{C08052A2150FKR}$
R166-R168	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R211	0699-3051		RESISTOR 10K +-1\%.1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1002FKR}$
R213	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1002FKR}$
R221	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1002FKR}$
R223	0699-3051		RESISTOR 10K +-1\%.1W TKF TC=0+-100	06337	9C08052A1002FKR
R231	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1002FKR}$
R233	0699-3051		RESISTOR 10K +-1\%.1W TKF TC $=0+-100$	06337	$9 \mathrm{C08052A1002FKR}$

Chapter 7 Replaceable Parts 34904A 4x8 Matrix

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
R241	0699-3051		RESISTOR 10K +-1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R243	0699-3051		RESISTOR 10K +-1\%.1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1002FKR}$
R251	0699-3051		RESISTOR $10 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1002FKR
R253	0699-3051		RESISTOR 10K $+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1002FKR
R261	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0t-100	06337	9C08052A1002FKR
R263	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0t-100	06337	9C08052A1002FKR
R271	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0t-100	06337	9C08052A1002FKR
R273	0699-3051		RESISTOR 10K $+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1002FKR
R281	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R283-R284	0699-3051		RESISTOR 10K $+1 \%$.1W TKF TC=0t-100	06337	9C08052A1002FKR
R287	0699-3051		RESISTOR 10K $+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A1002FKR
U101	34903-88801	1	PROGMD 1821-1876 MCU N87C52	02632	34903-88801
U102-U103	1820-5752	2	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U111	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U141	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
XU101	1200-1592	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822499-1
Y101	0410-4009	1	CERO-RES 12MHZ $+1-0.8 \%$	00830	PBRC-12.0BRN07

34905A/34906A RF Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
C101-C103	0160-5945	9	CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C111	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C140	0160-7798	1	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C151	0160-5947	1	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C158	0180-4545	1	CAP-FXD 4.7uF +-20\% 20 V TA	12340	T491B475M020AS
C164-C165	0160-5967	2	CF 100PF 5\% 0805	03292	0160-5967
C166	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C201-C204	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
CR102	1906-0291	1	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR170	1906-0395	1	DIODE-DUAL 75V TO-253	02910	BAS28
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
K101-K103	0490-1671	6	RELAY, RG1ET-L-3V	01850	RG1ET-L-3V-H14
K201-K203	0490-1671		RELAY, RG1ET-L-3V	01850	RG1ET-L-3V-H14
For 34906A 75 Ω RF Multiplexer:					
K101-K103	0490-1672	6	RELAY, 1C 3VDC-COIL 1A 24 VDC	01850	RG1E-L-3V-H13
K201-K203	0490-1672		RELAY, 1C 3VDC-COIL 1A 24 VDC	01850	RG1E-L-3V-H13
L105-L109	9170-1584	5	CORE-SHLD BEAD	09808	25Z0805-OSR
L170-L171	9140-1782	2	INDUCTOR 4.7uH +10\% -10\%	06352	NLC565050T-4R7K
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001
P1-P10	1250-1377	10	CONNECTOR-RF SMB PLUG PC-W/O-STDF 50-OHM	03621	5164-5003-09
For 34906A 75, RF Multiplexer:					
P1-P10	1250-2339	10	CONNECTOR-RF SMB PLUG PC-W/O-STDF 75-OHM	03621	131-8701-301
Q101	1854-1053	12	TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q102	1853-0525	36	TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q103	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q104	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q105	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q106	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q107	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q108	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q109	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q110	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q111	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q112	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q170	1855-1101	1	TRANSISTOR-MOSFET DUAL P-CHAN E-MODE SI	02037	MMDF2P02E

Chapter 7 Replaceable Parts 34905A/34906A RF Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
Q201	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q202	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q203	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q204	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q205	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q206	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q207	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q208	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q209	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q210	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q211	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q212	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q231-Q254	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
R27	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	$9 \mathrm{C08052A1001FKR}$
R101-R112	0699-3040	24	RESISTOR $3.16 \mathrm{~K}+1 \%$. 1 W TKF TC=0+-100	02995	9C08052A3161FKR
R140	0699-3051	7	RESISTOR 10K $+1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R148	0699-3053	1	RESISTOR 100K + -1\% .1W TKF TC=0 + - 100	02995	9C08052A1003FKR
R149	0699-3051		RESISTOR 10K $+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A1002FKR
R151-R152	0699-3034	7	RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R154	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+-100$	06337	9C08052A1001FKR
R155	0699-3061	1	RESISTOR 261 +-1\%.1W TKF TC=0+-100	06337	9C08052A2610FKR
R156-R158	0699-3067	3	RESISTOR 14.7K +-1\% .1W TKF TC=0+-100	06337	9C08052A1472FKR
R159-R163	0699-3051		RESISTOR 10K + -1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R164-R165	0699-2973	2	RESISTOR $215+1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R166-R168	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+-100$	06337	9C08052A1001FKR
R201-R212	0699-3040		RESISTOR $3.16 \mathrm{~K}+1 \%$. 1 W TKF TC=0+-100	02995	$9 \mathrm{C08052A3161FKR}$
SH101	34905-60601	4	SHIELD-RF	01642	34905-60601
SH103	34905-60601		SHIELD-RF	01642	34905-60601
SH201	34905-60601		SHIELD-RF	01642	34905-60601
SH203	34905-60601		SHIELD-RF	01642	34905-60601
U101	34903-88801	1	PROGMD 1821-1876 MCU N87C52	02632	34903-88801
U102-U103	1820-5752	2	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U111	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U141	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
XU101	1200-1592	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822499-1
Y101	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07

34907A Multifunction M odule

Reference Designator	Part Number	Qty	Part Description	$\begin{gathered} \text { Mfr } \\ \text { Code } \end{gathered}$	Mfr Part Number
C101-C102	0160-7798	17	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C103	0160-5945	9	CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C104-C105	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C106-C108	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C110-C112	0160-5967	9	CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C120	0160-5947	4	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C140	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C150	0180-4545	1	CAP-FXD 4.7uF +-20\% 20 V TA	12340	T491B475M020AS
C203	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C204	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C205	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C206-C207	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C208	0180-4287	6	CAP-FXD 10uF +-20\% 35 V TA	05524	293D106X0035D2W
C211-C214	0160-5967		CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C301	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C302	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C401	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C402	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C502-C505	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C506	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C507-C508	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C510	0180-4116	1	CAP-FXD 22uF 20 V TA	00039	NRD226M20R12
C511	0160-6218	1	CAP-FXD 4700pF 50 V	12473	0160-6218
C512	0160-5944	1	CAP-FXD 0.047uF 50 V	12473	0160-5944
C513-C514	0180-4287		CAP-FXD 10uF +-20\% 35 V TA	05524	293D106X0035D2W
C515-C516	0180-3751	2	CAP-FXD 1uF + -20\% 35 V TA	00039	NRS105M35R8
C520	0180-4287		CAP-FXD 10uF +-20\% 35 V TA	05524	293D106X0035D2W
C521	0180-3744	1	TANT SMD 4.7 20\%	00039	NRS475M10R8
C522	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C523-C524	0180-4287	1	CAP-FXD 10uF +-20\% 35 V TA	05524	293D106X0035D2W
C531	0160-5967		CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C532	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA
C533	0160-5967		CAP-FXD 100pF +-5\% 50 V CER COG	03292	0160-5967
C534	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA
C550-C551	0160-7733	2	CAP-FXD 100pF +-1\% 50 V CER C0G	12340	C0805C101F5GAC
C552	0160-5947		CAP-FXD 1000pF 50 V	02010	08055C102KATA

Chapter 7 Replaceable Parts 34907A Multifunction Module

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
CR101-CR106	1906-0358	22	DIODE-DUAL 100V 100MA TO-236AB (SOT-23)	03406	MMBD1203-HIGH
CR110	1906-0291	4	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR301-CR308	1906-0358		DIODE-DUAL 100V 100MA TO-236AB (SOT-23)	03406	MMBD1203-HIGH
CR401-CR408	1906-0358		DIODE-DUAL 100V 100MA TO-236AB (SOT-23)	03406	MMBD1203-HIGH
CR501-CR504	1901-1386	4	DIO SI PN SOT23 100V 750MA BAS78B	06121	BAS78B
CR505-CR506	1902-1643	2	DIODE-ZNR 15V PD=1.5W IR=1UA	02037	1SMB5929B
CR507	1901-1582	1	DIODE-PWR RECT 30V 500MA	02037	MBR0530T3
CR510-CR511	1901-1332	2	DIODE-UNMOUNTED CHIP	03038	10BQ040
CR520-CR521	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR530	1901-1348	1	DIO TVS UNIDIR SMB 24 V 600WP SMBJ24A	03287	SMBJ24A
CR531	1906-0291		DIODE-DUAL 70 V 100MA T0-236AA	02910	BAV99
FB501-FB506	9170-1584	8	CORE-SHLD BEAD	09808	25Z0805-0SR
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
L105	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
L109	9170-1584		CORE-SHLD BEAD	09808	25Z0805-OSR
L201-L202	9140-1782	2	INDUCTOR 4.7uH + 10%-10\%	06352	NLC565050T-4R7K
L501-L502	9140-1638	2	INDUCTOR 10UH +10\% -10\% 2.7W-MMX3.4LG-MM	06352	NLC322522T-100K
L510	9140-2152	1	L SMT 22uH 20\% 1.32A	05524	LPE-4841 220UH $+1-20 \% \text { B }$
L515-L516	9140-1238	2	INDUCTOR 10UH +-5\% 2.8W-MMX3.4LG-MM Q=30	02366	KL32TE100J
MAL510	34907-00601	1	SHIELD	02631	34907-00601
MAP102	1258-0209	1	JUMPER - REMOVABLE, TWO POSITION	01380	531220-2
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001
P101	0360-2623	2	CONN TERMNAL BK RA FEM 4 PIN	13389	M1.040.0001.8
P102	1251-4670	1	CONN-POST TYPE .100-PIN-SPCG 3-CONT	04726	2403-6112TB
P301	0360-2624	2	CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
P401	0360-2624		CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
P501	0360-2623		CONN TERMNAL BK RA FEM 4 PIN	13389	M1.040.0001.8
Q301-Q308	1855-0800	16	TRANSISTOR MOSFET N-CHAN E-MODE TO-252AA	02037	MTD3055EL
Q401-Q408	1855-0800		TRANSISTOR MOSFET N-CHAN E-MODE TO-252AA	02037	MTD3055EL
R101-R102	0699-3034	8	RESISTOR $1 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC $=0+-100$	06337	9C08052A1001FKR
R104	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R105	0699-3053	4	RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
R108	0699-3053		RESISTOR 100K + -1\% .1W TKF TC=0+-100	02995	9C08052A1003FKR
R109	0699-3051	4	RESISTOR 10K + -1\% .1W TKF TC=0+-100	06337	9C08052A1002FKR
R110-R111	0699-2973	10	RESISTOR $215+-1 \% .1 W$ TKF TC=0+-100	06337	9C08052A2150FKR
R112	0699-3053		RESISTOR 100K $+-1 \%$.1W TKF TC=0+-100	02995	9C08052A1003FKR
R113	0699-3070	1	RESISTOR 26.1K +-1\% .1W TKF TC=0+-100	06337	9C08052A2612FKR
R114	0699-3044	3	RESISTOR 4.64K +-1\%.1W TKF TC=0+-100	06337	9C08052A4641FKR
R115	0699-3052	5	RESISTOR 12.1K +-1\%.1W TKF TC=0+-100	02995	9C08052A1212FKR
R116	0699-2997	1	RESISTOR 133K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1333FKR
R117	0699-3052		RESISTOR 12.1K +-1\% .1W TKF TC=0+-100	02995	9C08052A1212FKR
R118	0699-3044		RESISTOR 4.64K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A4641FKR
R119	0699-2986	1	RESISTOR 21.5K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A2152FKR
R120-R123	0699-1319	16	RESISTOR 12.1K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R124	0699-3008	4	RESISTOR $511 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A5113FKR
R125-R128	0699-1319		RESISTOR 12.1K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R129	0699-3008		RESISTOR 511K +-1\% .1W TKF TC=0+-100	06337	9C08052A5113FKR
R130-R133	0699-1319		RESISTOR 12.1K +-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
R134-R135	0699-3008		RESISTOR $511 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A5113FKR
R140	0699-3052		RESISTOR 12.1K +-1\%.1W TKF TC=0+-100	02995	9C08052A1212FKR
R141	0699-3049	1	RESISTOR 8.25K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A8251FKR
R148	0699-3053		RESISTOR $100 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	02995	9C08052A1003FKR
R151-R153	0699-2643	3	RESISTOR $0+-5 \%$. 1 W TKF TC= $0+-300$	06337	9C08052A0R00JL
R166-R168	0699-3034		RESISTOR 1K +-1\% .1W TKF TC=0+-100	06337	9C08052A1001FKR
R205	0699-3051		RESISTOR 10K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R211-R214	0699-2973		RESISTOR $215+-1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R215-R216	0699-3051		RESISTOR 10K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
R301	0699-3047	1	RESISTOR $6.81 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	02995	9C08052A6811FKR
R302	0699-3045	1	RESISTOR $5.11 \mathrm{~K}+-1 \% .1 \mathrm{~W}$ TKF TC=0+-100	06337	9C08052A5111FKR
R501	0699-3602	2	RESISTOR $12.4 \mathrm{~K}+-0.1 \%$.125W TF TC= $0+-25$	06337	9C12063A1242BE
R502	0699-2838	2	RESISTOR 40K +-0.1\% .125W TF TC=0+-25	06337	9C12063A4002BE
R503	0699-3602		RESISTOR 12.4K +-0.1\% .125W TF TC=0+-25	06337	9C12063A1242BE
R504	0699-2838		RESISTOR 40K +-0.1\% .125W TF TC=0+-25	06337	9C12063A4002BE
R505-R506	0699-3052		RESISTOR 12.1K +-1\% .1W TKF TC=0+-100	02995	9C08052A1212FKR
R510	0699-3036	1	RESISTOR 1.96K +-1\%.1W TKF TC=0+-100	06337	9C08052A1961FKR
R511	0699-3046	1	RESISTOR 6.19K +-1\% .1W TKF TC=0+-100	06337	9C08052A6191FKR
R512	0699-2962	1	RESISTOR 68.1K +-1\%.1W TKF TC=0+-100	06337	9C08052A6812FKR
R513	0699-3044		RESISTOR 4.64K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A4641FKR
R514	0699-3034		RESISTOR 1K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R518	0699-3034		RESISTOR 1K +-1\% .1W TKF TC=0+-100	06337	9C08052A1001FKR
R531-R534	0699-2973		RESISTOR $215+-1 \% .1 W$ TKF TC=0+-100	06337	9C08052A2150FKR
R550-R551	0699-3832	2	RESISTOR $51.1+-1 \% .1 W$ TKF TC=0+-100	06337	9C08052A51R1FK

Chapter 7 Replaceable Parts
34907A Multifunction Module

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
R552	0699-3061	1	RESISTOR 261 +-1\% .1W TKF TC=0+-100	06337	9C08052A2610FKR
R553-R556	0699-1319		RESISTOR $12.1 \mathrm{~K}+$-1\% .125W TKF TC=0+-100	04935	9C12063AFKR
RP101-RP102	1810-1580	12	RESISTOR; CARBON FILM;NTWRK	00746	MNR34K5AWJ103
RP104-RP105	1810-1580		RESISTOR; CARBON FILM;NTWRK	00746	MNR34K5AWJ103
RP201-RP204	1810-1831	4	NETWORK-RES 620 X 4 5\% 1206.125W 200V	09891	CN2B4TE621J
RP301-RP302	1810-1660	4	NETWORK-RES 3.3KX4 5\% 1206 .125W 200W	09891	CN2B4332J
RP303-RP304	1810-1580		RESISTOR; CARBON FILM;NTWRK	00746	MNR34K5AWJ103
RP305-RP306	1810-1521	4	NETWORK-RES 100K X 4 5\% 1206.125 W 200V	09891	CN2B4104J
RP307-RP308	1810-1580		RESISTOR; CARBON FILM;NTWRK	00746	MNR34K5AWJ103
RP401-RP402	1810-1660		NETWORK-RES 3.3KX4 5\% 1206 .125W 200W	09891	CN2B4332J
RP403-RP404	1810-1580		RESISTOR; CARBON FILM;NTWRK	00746	MNR34K5AWJ103
RP405-RP406	1810-1521		NETWORK-RES 100K X 4 5\% 1206.125 W 200V	09891	CN2B4104J
RP407-RP408	1810-1580		RESISTOR; CARBON FILM;NTWRK	00746	MNR34K5AWJ103
U101	34907-88811	1	PROGRAM PART	02632	34907-88801
U102	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U103	1820-7312	1	IC SCHMITT-TRIG CMOS/ACT INV HEX	02037	MC74ACT14DR2
U104	1820-4220	1	IC GATE CMOS/HC OR QUAD 2-INP	02910	74HC32D
U105-U106	1820-5752	6	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U107	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
U108	1826-2116	1	IC OP AMP LP DUAL 8 PIN PLSTC-SOIC	02037	MC34182D
U109	1826-1594	1	IC COMPARATOR GP SINGLE 8 PIN PLSTC-SOIC	04078	LM311D
U110	1820-5804	1	IC SHF-RGTR CMOS/HC SYNC/ASYNC	02037	MC74HC165D
U111	1820-4938	1	IC GATE CMOS/HC EXCL-OR QUAD 2-INP	02910	74HC86D
U201-U204	1820-5752		IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U205-U206	1820-4216	2	IC DRVR CMOS/HC BUS OCTL	02910	74HC240D
U301-U302	1826-1225	4	IC COMPARATOR LP QUAD 14 PIN PLSTC-SOIC	03406	LP339M
U401-U402	1826-1225		IC COMPARATOR LP QUAD 14 PIN PLSTC-SOIC	03406	LP339M
U502	1826-3088	1	IC PWR MGT-V-REG-ADJ-NEG -5.25-4.75V 8	11302	MAX735CSA
U503-U504	1826-2793	2	D/A 16-BIT 16-P-SOIC BICMOS	03285	AD1851R
U505-U506	1826-2819	2	IC OP AMP PRCN SINGLE 8 PIN PLSTC-SOIC	03285	OP177GS
U510	1826-3193	1	IC PWR MGT-V-REG-SWG 8 PINS P-SOIC PKG	10858	LT1372CS8
VR101-VR104	1901-1410	4	DIO TVS BIDIR SMB 600WP 110V SMBJ110C	03287	SMBJ110C
XU101	1200-1592	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822499-1
Y101	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07

34908A 40-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	$\begin{aligned} & \text { Mfr } \\ & \text { Code } \end{aligned}$	Mfr Part Number
C101-C106	0160-7798	9	CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C107	0160-7708	1	CAP-FXD 1000pF +-5\% 50 V CER COG	12340	C0805C102J5GAC
C109	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C110	0160-7828	1	CAP .1UF 16V 10\% X7R	02010	0603C104KAT
C119-C123	0160-5947	5	CAP-FXD 1000pF 50 V	02010	08055C102KATA
C125	0160-7845	2	CAP FXD 180PF +-5\% 50 V CER COG	12340	C0603C181J5GAC
C127	0160-7845		CAP FXD 180PF +-5\% 50 V CER COG	12340	C0603C181J5GAC
C140-C141	0160-5945	12	CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C145	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
C150	0180-4545	1	CAP-FXD 4.7uF +-20\% 20 V TA	12340	T491B475M020AS
C151-C152	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C201-C208	0160-5945		CAP-FXD 0.01uF 50 V	02010	08055C103KATA
C209	0160-7798		CAP 0.1UF 50V 10\% X7R 0805	02010	08055C104KAT_A
CR102	1906-0395	5	DIODE-DUAL 75V TO-253	02910	BAS28
CR104	1902-1574	2	DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
CR106	1902-1574		DIODE-ZNR 6.8V 6\% TO-236 (SOT-23)	02910	BZX84C6V8
CR107	1906-0291	22	DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR201-CR220	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR221-CR222	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
CR223	1906-0291		DIODE-DUAL 70V 100MA T0-236AA	02910	BAV99
CR224-CR225	1906-0395		DIODE-DUAL 75V TO-253	02910	BAS28
J101	1252-8024	1	CONN-POST TYPE .100-PIN-SPCG-MTG-END	05525	26-8477-048-002-025
J102-J104	0360-2624	4	CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
J106	0360-2624		CONN TERMINAL BK RA FEM 12PIN	13389	M1.040.0001.9
K401-K420	0490-1896	21	RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
K421	0490-1895	1	RLY-2C 2A 220V 60WATT 4.5V COIL	12921	G6S-2-DC4.5
K422	0490-1896		RLY-2C 2A 220V 60WATT 3V-COIL LATCHING	12921	G6SU-2-DC3
L101-L103	9170-1663	4	CORE-SHIELDING BEAD	11702	FBM4532HM132
L105	9170-1584	10	CORE-SHLD BEAD	09808	25Z0805-0SR
L109-L115	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
L150	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
L152	9170-1584		CORE-SHLD BEAD	09808	25Z0805-0SR
L400	9170-1663		CORE-SHIELDING BEAD	11702	FBM4532HM132

Chapter 7 Replaceable Parts 34908A 40-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	$\begin{gathered} \mathrm{Mfr} \\ \text { Code } \end{gathered}$	Mfr Part Number
MP1	34901-60001		KIT, MODULE COVER, CASE	02362	34901-60001
Q101	1855-1101	1	TRANSISTOR-MOSFET DUAL P-CHAN E-MODE SI	02037	MMDF2P02E
Q201	1854-1053	17	TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q202-Q203	1853-0525	16	TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q204	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q205	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q206-Q207	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q208-Q209	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q210	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q211	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q212-Q213	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q214	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q215	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q216-Q217	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q218	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q219	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q220-Q221	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q222-Q223	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q224	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q225	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q226-Q227	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q228	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q229	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2२22A
Q230	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q231	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
Q232	1853-0525		TRANSISTOR PNP SI TO-236AA PD=200MW	02237	MMBT2907
Q233	1854-1053		TRANSISTOR NPN SI SOT-23 (TO-236AB)	12125	KST2222A
R102-R105	0699-3034	12	RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R106-R109	0699-3051	40	RESISTOR 10K $+1 \%$.1W TKF TC=0 + - 100	06337	9C08052A1002FKR
R110-R112	0699-3067	5	RESISTOR $14.7 \mathrm{~K}+-1 \%$.1W TKF TC $=0+-100$	06337	9C08052A1472FKR
R113	0699-3051		RESISTOR $10 \mathrm{~K}+1 \%$.1W TKF TC=0t-100	06337	9C08052A1002FKR
R114-R115	0699-3067		RESISTOR $14.7 \mathrm{~K}+1 \%$. 1 W TKF TC $=0+-100$	06337	9C08052A1472FKR
R117-R120	0699-2973	4	RESISTOR $215+1 \%$.1W TKF TC=0+-100	06337	9C08052A2150FKR
R147	0699-3051		RESISTOR 10K $+1 \%$. 1 W TKF TC=0+-100	06337	9C08052A1002FKR
R148	0699-3077	1	RESISTOR 1M +-1\% .1W TKF TC=0+-100	06337	9C08052A1004FKR
R149	0699-3051		RESISTOR 10K $+1 \%$. 1 W TKF TC=0 + -100	06337	9C08052A1002FKR
R150-R153	0699-3034		RESISTOR $1 \mathrm{~K}+-1 \%$.1W TKF TC $=0+100$	06337	9C08052A1001FKR

Chapter 7 Replaceable Parts 34908A 40-Channel Multiplexer

Reference Designator	Part Number	Qty	Part Description	Mfr Code	Mfr Part Number
R154	0699-3947	2	RESISTOR 1K +-1\% .063W TKF TC=0+-200	06337	9C0603A1001FL
R156	0699-3947		RESISTOR $1 \mathrm{~K}+-1 \%$.063W TKF TC=0+-200	06337	9C0603A1001FL
R166-R168	0699-3034		RESISTOR 1K +-1\% .1W TKF TC=0+-100	06337	9C08052A1001FKR
R170-R180	0699-3044	11	RESISTOR 4.64K +-1\% .1W TKF TC=0+-100	06337	9C08052A4641FKR
R181	0699-3034		RESISTOR 1K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1001FKR
R182	0699-3932	2	RESISTOR $215+-1 \% .063 W$ TKF TC=0+-200	06337	9C0603A2150FL
R185	0699-3932		RESISTOR $215+-1 \% .063 W$ TKF TC=0+-200	06337	9C0603A2150FL
R201-R233	0699-3051		RESISTOR 10K $+-1 \%$.1W TKF TC=0+-100	06337	9C08052A1002FKR
U101	34901-88822	1	PRGM'D 1821-1876	02632	34901-88822
U102-U105	1820-5752	4	IC FF CMOS/HC D-TYPE POS-EDGE-TRIG COM	02910	74HC574D
U109	1820-5941	1	IC DCDR-DEMUXR CMOS/ACT BIN 8-TO-1-LINE	03406	74ACT138SC
U141	1821-0055	1	IC SCHMITT-TRIG CMOS/ACT NAND QUAD 2-INP	02037	MC74ACT132D
U150	1818-6821	1	FRAM SERIAL 4K FMZ4C04-S	14543	FM24C04-S
U151-U152	1821-2382	2	IC-INTERFACE MISC BIPOLAR 9-BIT	12186	DS1620S
XU101	1200-1592	1	SOCKET-IC-PLCC 44-CONT SQUARE J-LEAD	01380	3-822499-1
Y101	0410-4009	1	CERO-RES 12MHZ +1-0.8\%	00830	PBRC-12.0BRN07

Manufacturer's List

Mfr Code	Mfr Name	City	State	Country
00039	NEC ELECTRONICS INC	MTN VIEW	CA	US
00746	ROHM CORP	KYOTO 615		JP
00830	KYOCERA AMERICA, INC	SAN DIEGO	CA	US
01380	AMP INC	HARRISBURG	PA	US
01542	DIV 01 SAN JOSE COMPONENTS	SAN JOSE	CA	US
01642	SONS TOOL INC	WOODVILLE	WI	US
01698	TEXAS INSTRUMENTS INC	DALLAS	TX	US
01850	AROMAT CORP	MOUNTAINSIDE	NJ	US
02010	AVX CORP	GREAT NECK	NY	US
02037	MOTOROLA INC	ROSELLE	IL	US
02194	ROBINSON NUGENT INC	NEW ALBANY	IN	US
02237	FAIRCHILD SEMICONDUCTOR	SOUTH PORTLAND	ME	US
02361/2	AGILENT TECHNOLOGIES	LOVELAND	CO	US
02499	INTERNATIONAL RESISTIVE CO.	BOONE	NC	US
02883	TEMIC/SILICONIX INC	SANTA CLARA	CA	US
02910	PHILIPS SEMICONDUCTORS	EINDHOVEN		NL
03038	INTL RECTIFIER CORP	LOS ANGELES	CA	US
03285	ANALOG DEVICES INC	NORWOOD	MA	US
03287	GENERAL SEMICONDUCTOR IND INC	TEMPE	AZ	US
03292	CORNING GLASS WORKS	CORNING	NY	US
03406	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA	CA	US
03418	MOLEX INC	LISLE	IL	US
03677	AMERICAN MICRO SYSTEMS INC	SANTA CLARA	CA	US
03744	BOURNS NETWORKS INC	RIVERSIDE	CA	US
03811	INTEL CORP	SANTA CLARA	CA	US
03827	FAIR RITE PRODUCTS CORP	WALLKILL	NY	US
04078	SGS-THOMSON MICROELECTRONICS INC	PHOENIX	AZ	US
04501	COTO WABASH	PROVIDENCE	RI	US
04504	GENERAL INSTRUMENT CORP	CHICAGO	IL	US
04670	JOHNSON COMPONENTS INC	WASECA	MN	US
04726	3M CO	ST PAUL	MN	US

Mfr Code	Mfr Name	City	State	Country
04733	BELL INDUSTRIES INC MILLER JW DIV	GARDENA	CA	US
05176	AMERICAN SHIZUKI CORP	CANOGA PARK	CA	US
05524	VISHAY INTERTECHNOLOGY INC	MALVERN	PA	US
05525	ELCO CORP	NEWPORT BEACH	CA	US
05535	KEYSTONE ELECTRONICS CORP	NEW YORK	NY	US
05951	WICKMANN-WERKE A G	WITTEN-ANNEN		DE
06121	SIEMENS AG	MUNICH		DE
06337	PHILIPS ELECTRONICS NV	EINDHOVEN		NL
06352	TDK CORPORATION OF AMERICA	SKOKIE	IL	US
06360	NIPPON CHEMI-CON CORP	OHME-SHI TOKYO		JP
06916	SONY CORP	TOYKO		JP
07179	AAVID THERMAL TECHNOLOGY INC	LACONIA	NH	US
07371	SANYO ELECTRIC INC	MORIGYCHI		JP
08709	MATSUSHITA ELECTRIC CORPORATION OF	SECAUCUS	NJ	US
09235	FOX ELECTRONICS	FT MEYERS	FL	US
09454	PRECISION RESISTIVE PRODS INC	MEDIAPOLIS	IA	US
09808	STEWARD INC	CHATTANOOGA	TN	US
09891	KOA CORPORATION	INA-SHI NAGANO-KEN		JP
09939	MURATA ELECTRONICS NORTH AMERICA, INC.	LONG BEACH	CA	US
10421	EPSON AMERICA INC	TORRENCE	CA	US
10858	LINEAR TECHNOLOGY CORP	MILPITAS	CA	US
11302	MAXIM INTEGRATED PRODUCTS	SUNNYVALE	CA	US
11484	JOSLYN ELECTRONIC SYSTEMS DIV	GOLETA	CA	US
11702	TAIYO YUDEN CO LTD	TOKYO 110		JP
11908	NORITAKE CO LTD	NISHI-KU - NAGOYA		JP
12125	SAMSUNG SEMICONDUCTOR INC	SANTA CLARA	CA	US
12186	DALLAS SEMICONDUCTOR CORP	DALLAS	TX	US
12340	KEMET ELECTRONICS CORPORATION	GREENVILLE	SC	US
12768	SEIKO EPSON CORP	NAJANO-KEN TOKYO		JP
12921	OMRON JAPAN	KYOTO		JP
13389	WIELAND INC	ROCHELLE	NY	US
14543	RAMTRON	COLORADO SPRINGS	CO	US

© Copyright Agilent Technologies, Inc. 1997-2003

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies as governed by the United States and international copyright laws.

Manual Part Number

34970-90012, March 2003
(order as 34970-90101 manual set)

Edition

Edition 3, March 2003
Edition 2, October 1997
Edition 1, July 1997
Printed in Malaysia
Agilent Technologies, Inc.
815 14th Street S.W.
Loveland, Colorado 80537 U.S.A.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products. For assistance, contact your nearest Agilent Technologies Sales and Service Office. Further information is available on the Agilent web site at www.agilent.com/find/assist.

Trademark Information

Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ are U.S. registered trademarks of Microsoft Corporation. All other brand and product names are trademarks or registered trademarks of their respective companies.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

The material contained in this

 document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement will control.
Technologies Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as
"Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

Do not defeat power cord safety ground feature. Plug in to a grounded outlet.

Do not use product in any manner not specified by the manufacturer.

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

Symbols

Earth ground

Chassis ground

Risk of electric shock

WARNING

Main power disconnect: Unplug product from wall outlet and remove power cord before servicing. Only qualified, service-trained personnel should remove the cover from the instrument or connect external wiring to a module.

For continued protection against fire, replace the line fuse only with a fuse of the specified type and rating.

[^0]: To review the display annunciators, hold down the
 key as you turn on the instrument.

[^1]: [1] Errors included in DMM measurement accuracy specifications
 [2] Applies to resistive loads only
 [3] Bandwidth direct to module SMB connectors
 [4] 50Ω source, 50Ω load

[^2]: [1] Verify only, No adjustment. For this test, isolate the calibrator's output from earth ground. Q: Quick performance verification test points.

[^3]: * Only the channel currently under test should be closed at one time. All other channels should be open.

